Sacrificing body parts is one of many behaviors that animals use to escape predation. This trait, termed autotomy, is classically associated with lizards. However, several other taxa also autotomize, and this trait has independently evolved multiple times throughout Animalia. Despite having multiple origins and being an iconic antipredatory trait, much remains unknown about the evolution of autotomy. Here, we combine morphological, behavioral, and genomic data to investigate the evolution of autotomy within leaf-footed bugs and allies (Insecta: Hemiptera: Coreidae + Alydidae). We found that the ancestor of leaf-footed bugs autotomized and did so slowly; rapid autotomy (<2 min) then arose multiple times. The ancestor likely used slow autotomy to reduce the cost of injury or to escape nonpredatory entrapment but could not use autotomy to escape predation. This result suggests that autotomy to escape predation is a co-opted benefit (i.e., exaptation), revealing one way that sacrificing a limb to escape predation may arise. In addition to identifying the origins of rapid autotomy, we also show that across species variation in the rates of autotomy can be explained by body size, distance from the equator, and enlargement of the autotomizable appendage. K E Y W O R D S : Autotomy, evolutionary ecology, evolutionary origins, latitudinal gradient, phylogenetic comparative methods, predator-prey.
Sexually selected weapons are among the most exaggerated traits in nature. Sexual selection theory frequently assumes a high cost of this exaggeration; yet, those costs are rarely measured. We know very little about the energetic resources required to maintain these traits at rest and the difference in energetic costs for the largest individuals relative to the smallest individuals. Knowledge in this area is crucial; resting metabolic rate can account for 30–40% of daily energy expenditure in wild animals. Here, we capitalized on the phenomenon of autotomy to take a unique look at weapon maintenance costs. Using Leptoscelis tricolor (Hemiptera: Coreidae), we measured CO 2 production rates before and after a weapon was shed. Males in this insect species use enlarged hind femora as weapons in male–male combat, and yet can shed them readily, without regeneration, upon entrapment. We found that metabolic rate decreased by an average of 23.5% in males after leg loss and by 7.9% in females. Notably, larger males had less of a drop in metabolic rate per gram of weapon lost. Our findings suggest that sexually selected weapons contribute to a large portion of resting metabolic rate in males, but these costs do not scale in direct proportion to size; larger males can have larger weapons for a reduced metabolic cost. These energetic maintenance costs may be integral to the evolution of the allometries of sexually selected weapons, and yet they remain largely unexplored.
Theory predicts a trade-off between sexually selected weapons used to secure mates and post-copulatory traits used to maximize fertilization success. However, individuals that have a greater capacity to acquire resources from the environment may invest more in both pre-and post-copulatory traits, and trade-offs may not be readily apparent. Here, we manipulate the phenotype of developing individuals to examine allocation trade-offs between weapons and testes in Mictis profana (Hemiptera: Coreidae), a species where the hind legs are sexually selected weapons used in contests over access to females. We experimentally prevented males from developing weapons by inducing them to autotomize their hind legs before the final moult to adulthood. We compared trait expression in this group to males where autotomy was induced in the mid-legs, which are presumably not under sexual selection to the same extent. We found males without weapons invested proportionally more in testes mass than those with their midlegs removed. Males that developed to adulthood without weapons did not differ from the mid-leg removal group in other traits potentially under precopulatory sexual selection, other post-copulatory traits or naturally selected traits. In addition, a sample of adult males from the same population in the wild revealed a positive correlation between investment in testes and weapons. Our study presents a critical contribution to a growing body of literature suggesting the allocation of resources to pre-and post-copulatory sexual traits is influenced by a resource allocation trade-off and that this trade-off may only be revealed with experimental manipulation.
Sexually selected weapons often function as honest signals of fighting ability. If poor-quality individuals produce high-quality weapons, then receivers should focus on other, more reliable signals. Cost is one way to maintain signal integrity. The costs of weapons tend to increase with relative weapon size, and thereby restrict large weapons to high-quality individuals who can produce and maintain them. Weapon cost, however, appears to be unpredictably variable both within and across taxa, and the mechanisms underlying this variation remain unclear. We suggest variation in weapon cost may result from variation in weapon composition—specifically, differences in the amount of muscle mass directly associated with the weapon. We test this idea by measuring the metabolic cost of sexually selected weapons in seven arthropod species and relating these measures to weapon muscle mass. We show that individuals with relatively large weapon muscles have disproportionately high resting metabolic rates and provide evidence that this trend is driven by weapon muscle mass. Overall, our results suggest that variation in weapon cost can be partially explained by variation in weapon morphology and that the integrity of weapon signals may be maintained by increased metabolic cost in species with relatively high weapon muscle mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.