BackgroundMajor human gastrointestinal pathogen Helicobacter pylori (H. pylori) colonizes the gastric mucosa causing inflammation and severe complications including cancer, but the involvement of fibroblasts in the pathogenesis of these disorders in H. pylori‐infected stomach has been little studied. Normal stroma contains few fibroblasts, especially myofibroblasts. Their number rapidly increases in the reactive stroma surrounding inflammatory region and neoplastic tissue; however, the interaction between H. pylori and fibroblasts remains unknown. We determined the effect of coincubation of normal rat gastric fibroblasts with alive H. pylori (cagA+vacA+) and H. pylori (cagA−vacA−) strains on the differentiation of these fibroblasts into cells possessing characteristics of cancer‐associated fibroblasts (CAFs) able to induce epithelial‐mesenchymal transition (EMT) of normal rat gastric epithelial cells (RGM‐1).Materials and MethodsThe panel of CAFs markers mRNA was analyzed in H. pylori (cagA+vacA+)‐infected fibroblasts by RT‐PCR. After insert coculture of differentiated fibroblasts with RGM‐1 cells from 24 up to 48, 72, and 96 hours, the mRNA expression for EMT‐associated genes was analyzed by RT‐PCR.ResultsThe mRNA expression for CAFs markers was significantly increased after 72 hours of infection with H. pylori (cagA+vacA+) but not H. pylori (cagA−vacA−) strain. Following coculture with CAFs, RGM‐1 cells showed significant decrease in E‐cadherin mRNA, and the parallel increase in the expression of Twist and Snail transcription factors mRNA was observed along with the overexpression of mRNAs for TGFβR, HGFR, FGFR, N‐cadherin, vimentin, α‐SMA, VEGF, and integrin‐β1.Conclusion Helicobacter pylori (cagA+vacA+) strain induces differentiation of normal fibroblasts into CAFs, likely to initiate the EMT process in RGM‐1 epithelial cell line.
ObjectiveApoptosis plays an important role in the regulation of gastric epithelial cell number and gastrointestinal disorders induced by Helicobacter pylori (Hp). Heat shock proteins (HSPs) are involved in cell integrity, cell growth and in gastric mucosa colonized by Hp. COX-2 was implicated in Hp-induced carcinogenesis but the effects of this germ and CagA cytotoxin on HSP70, COX-2, Bax and Bcl-2 in gastric cancer epithelial cells have been little studied.Material and methodsWe determined the expression for HSP70, Bax and Bcl-2 in human gastric epithelial MKN7 cells incubated with live strain Hp (cagA + vacA+) with or without co-incubation with exogenous CagA and NS-398, the selective COX-2 inhibitor. After 3–48 h of incubation, the expression of HSP70, COX-2, Bax and Bcl-2 mRNA and proteins were determined by RT-PCR and immunoprecipitation.ResultsHp inhibited expression for HSP70 and this was significantly potentiated by exogenous CagA. Co-incubation of epithelial cells with Hp, without or with CagA increased Bax expression and simultaneously decreased expression for Bcl-2. The increase in COX-2 mRNA and Bax expression were significantly inhibited by NS-398. We conclude that Hp promotes apoptosis in adenocarcinoma gastric epithelial cells in vitro and this is associated with activation of COX-2 and inhibition of HSP70.
Background: Colonization of the gastric mucosa with Helicobacter pylori (Hp) leads to the cascade of pathologic events including local inflammation, gastric ulceration, and adenocarcinoma formation. Paracrine loops between tissue cells and Hp contribute to the formation of gastric cancerous loci; however, the specific mechanisms underlying existence of these loops remain unknown. We determined the phenotypic properties of gastric fibroblasts exposed to Hp (cagA+vacA+) infection and their influence on normal epithelial RGM-1 cells. Materials and Methods: RGM-1 cells were cultured in the media conditioned with Hpactivated gastric fibroblasts. Their morphology and phenotypical changes associated with epithelial-mesenchymal transition (EMT) were assessed by Nomarski and fluorescence microscopy and Western blot analysis. Motility pattern of RGM-1 cells was examined by time-lapse video microscopy and transwell migration assay. The content of TGF-β in Hp-activated fibroblast-conditioned media was determined by ELISA. Results: The supernatant from Hp-activated gastric fibroblasts caused the EMT-like phenotypic diversification of RGM-1 cells. The formation of fibroblastoid cell sub-populations, the disappearance of their collective migration, an increase in transmigration potential with downregulation of E-cadherin and upregulation of N-cadherin proteins, prominent stress fibers, and decreased proliferation were observed. The fibroblast (CAF)-like transition was manifested by increased secretome TGF-β level, α-SMA protein expression, and its incorporation into stress fibers, and the TGF-βR1 kinase inhibitor reduced the rise in Snail, Twist, and E-cadherin mRNA and increased E-cadherin expression induced by CAFs. Conclusion: Gastric fibroblasts which are one of the main targets for Hp infection contribute to the paracrine interactions between Hp, gastric fibroblasts, and epithelial cells. TGF-β secreted by Hp-activated gastric fibroblasts prompting their differentiation toward CAF-like phenotype promotes the EMT-related phenotypic shifts in normal gastric epithelial cell populations. This mechanism may serve as the prerequisite for GC development. K E Y W O R D S cadherin, epithelial-mesenchymal transition, fibroblasts, Helicobacter pylori, transforming growth factor beta | 3 of 14 KRZYSIEK-MACZKA Et Al. | Isolation of conditioned mediaGastric fibroblasts were co-cultured with Hp (cagA+vacA+) strain for 72 hours. Then, the Hp was washed out from fibroblasts and the medium was changed into DMEM with 10% FBS and antibiotics. The culture dishes were maintained in a humidified atmosphere of 5% CO 2 at 37°C for 4 hours, and then, the incubatory fluid was again replaced with fresh portion of the medium. Fibroblasts were then left in fresh medium for 96 hours. After 96 hours, the supernatant was collected. The same procedure was applied to the control, noninfected fibroblast culture.
Intestinal alkaline phosphatase (IAP) is an essential mucosal defense factor involved in the process of maintenance of gut homeostasis. We determined the effect of moderate exercise (voluntary wheel running) with or without treatment with IAP on the course of experimental murine 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis by assessing disease activity index (DAI), colonic blood flow (CBF), plasma myokine irisin levels and the colonic and adipose tissue expression of proinflammatory cytokines, markers of oxidative stress (SOD2, GPx) and adipokines in mice fed a standard diet (SD) or high-fat diet (HFD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant decrease in CBF, and a significant increase in the colonic expression of tumor necrosis factor-alpha (TNF-α), IL-6, IL-1β and leptin mRNAs and decrease in the mRNA expression of adiponectin. These effects were aggravated in sedentary HFD mice but reduced in exercising animals, potentiated by concomitant treatment with IAP, especially in obese mice. Exercising HFD mice demonstrated a substantial increase in the mRNA for adiponectin and a decrease in mRNA leptin expression in intestinal mucosa and mesenteric fat as compared to sedentary animals. The expression of SOD2 and GPx mRNAs was significantly decreased in adipose tissue in HFD mice, but these effects were reversed in exercising mice with IAP administration. Our study shows for the first time that the combination of voluntary exercise and oral IAP treatment synergistically favored healing of intestinal inflammation, strengthened the antioxidant defense and ameliorated the course of experimental colitis; thus, IAP may represent a novel adjuvant therapy to alleviate inflammatory bowel disease (IBD) in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.