Electrical performance of in-situ steam generated (ISSG) oxide nitrided using remote plasma nitridation (RPN) has been evaluated. An equivalent oxide thickness (EOT) of 1.6 nm with gate leakage current around 5×10−3 A/cm2 (at −1.5V) has been achieved. The leakage current of remote plasma nitrided ISSG oxide is lower than that of ISSG only, where more than one order of magnitude leakage current reduction (at the same EOT) has been achieved for some RPN conditions. Moreover, it is observed that the extent to which the RPN process conditions modify device parameters such as EOT, flatband voltage (VFB), and time-to-breakdown (tbd) increases with decreasing ISSG thickness. The thinner ISSG oxides appear to be more susceptible to plasma damage and accumulation of positively charged nitrogen atoms at the oxide/Si interface. Therefore, RPN processes that use lower temperature and shorter time are preferred for very thin oxides. The nitrogen content and profile in the samples evaluated using SIMS analysis, indicate that RPN offers higher nitrogen content and better nitrogen profile compared to conventional nitrogen incorporation methods such as NO annealing [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.