We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1–10 μm) and high-energy density (1–50 J/cm2) of these short-pulsed (⩽1 μs) beams (with ion currents I=5–50 kA, and energies E=100–1000 keV) make them ideal in flash heating a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 1010 K/s causing amorphous layer formation and the producing nonequilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.