[1] Detection of the organic matter on Mars is one of the main goals of the future Martian landing missions. Yet, the degradation of organic molecules by cosmic ray irradiation on Mars is often ignored. We calculate the radiation dose accumulation rates from solar and galactic cosmic rays at various depths in the shallow Martian subsurface. We demonstrate that a 1-billion-year outcrop on Mars accumulates the dosage of $500 MGy in the top 0-2 cm and $50 MGy at 5-10 cm depths. We show that the preservation of ancient complex organic molecules in the shallow ($10 cm depth) subsurface of rocks could be highly problematic if the exposure age of a geologic outcrop would exceed 300 Myr. We demonstrate that more simple organic molecules with masses $100 amu should have a good chance to survive in the shallow subsurface of rocks. Implications to the sampling strategy for the oncoming Martian missions are discussed. Citation: Pavlov, A. A., G. Vasilyev, V. M. Ostryakov, A. K. Pavlov, and P. Mahaffy (2012), Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays, Geophys. Res. Lett., 39, L13202,
We suggest an explanation of a sharp increase in the abundance of cosmogenic radiocarbon found in tree rings dated AD 775. The increase could originate from high-energy irradiation of the atmosphere by a galactic gamma-ray burst. We argue that, unlike a cosmic ray event, a gamma-ray burst does not necessarily result in a substantial increase in long-lived 10 Be atmospheric production. At the same time, the 36 Cl nuclide would be generated in the amounts detectable in the corresponding ice core samples from Greenland and Antarctica. These peculiar features allow experimental discrimination of nuclide effects caused by gamma-ray bursts and by powerful proton events.
Abstract.We examine the energy-dependent rates of charge-changing processes of energetic Fe ions in the hot plasma of the solar corona. For ionization of the Fe-ion projectile in collisions with ambient protons, three different methods of estimating the corresponding ionization cross sections are presented and compared. Proton-impact ionization is found to be significant irrespective of the particular method used. Differences in the proton-impact ionization cross sections' estimates are shown to have little effect in calculating highly nonequilibrium Fe charge states during acceleration, whereas equilibrium charge states are sensitive to such differences. A parametric study of the Fe charge-equilibration comprises (i) impact of the ambient plasma density, and (ii) the energy dependence impact of the acceleration rate upon the charge-energy profiles and upon the estimated values of the density × acceleration-time product. We emphasize potential importance of careful measurements of charge-energy profiles along with ion energy spectra for determining the energy dependence of ion acceleration time and the energy dependence of the leaky-box escape time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.