Nanocoatings formed by various plasma and chemical methods on the surface of polymeric materials have unique properties. However, the applicability of polymeric materials with nanocoatings under specific temperature and mechanical conditions depends on the physical and mechanical properties of the coating. The determination of Young’s modulus is a task of paramount importance since it is widely used in calculations of the stress–strain state of structural elements and structures in general. Small thicknesses of nanocoatings limit the choice of methods for determining the modulus of elasticity. In this paper, we propose a method for determining the Young’s modulus for a carbonized layer formed on a polyurethane substrate. For its implementation, the results of uniaxial tensile tests were used. This approach made it possible to obtain patterns of change in the Young’s modulus of the carbonized layer depending on the intensity of ion-plasma treatment. These regularities were compared with regularities of changes in the molecular structure of the surface layer caused by plasma treatment of different intensity. The comparison was made on the basis of correlation analysis. Changes in the molecular structure of the coating were determined from the results of infrared Fourier spectroscopy (FTIR) and spectral ellipsometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.