The determination of iron(II) with 1,10-phenanthroline in aqueous solutions was carried out exemplarily by thermal lens spectrometry. The peculiarities of analytical reactions at the nanogram level of reactants can be studied using this method. Under the conditions of the competing reaction of ligand protonation, the overall stability constant for iron(II) chelate with 1,10-phenanthroline was determined at a level of n x 10(-7) mol L(-1), logbeta3 = 21.3+/-0.1. The rates of formation and dissociation of iron(II) tris-(1,10-phenanthrolinate) at a level of n x 10(-8) mol L(-1) were found to be (2.05+/-0.05) x 10(-2) min(-1) and (3.0+/-0.1) x 10(-3) min(-1), respectively. The conditions for the determination of iron(II) with 1,10-phenanthroline by thermal lensing were reconsidered, and ascorbic acid was shown to be the best reducing agent, which provided minimum and reproducible sample pretreatment. Changes in the conditions at the nanogram level improved both the selectivity and sensitivity of determination. The optimum measurement conditions for thermal lensing were determined not only by the absorption of the analyte and reagents, but also by the background absorption of the solvent. The limits of detection and quantification of iron(II) at 488.0 nm (excitation beam power 140 mW) are 1 x 10(-9) and 6 x 10(-9) mol L(-1), respectively; the reproducibility RSD for the range n x 10(-8)-n x 10(-6) mol L(-1) is 2-5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.