Abstract. The objectives of this study were to evaluate the effects of recombinant bovine somatotropin (rbST) on the nuclear and cytoplasmic maturation of bovine oocytes and their further developmental competence to blastocysts in vitro. We analyzed the mitochondrial activity and concentration of intracellular stored calcium ([Ca 2+ ]is) in matured oocytes and the morphology and chromatin status of produced embryos after in vitro fertilization. Cumulus-oocyte complexes were incubated in TCM 199 containing 10% fetal calf serum (control medium 1: CM 1) or 10% estrus cow serum (control medium 2: CM 2). The culture medium of the treatment groups was modified by supplementation of the control medium with 10 ng/ml rbST (CM 1A and CM 2A), 10 6 /ml granulosa cells (CM 1B and CM 2B), or 10 ng/ml rbST plus 10 6 /ml granulosa cells (CM 1C and CM 2C). No differences were observed in the percentages of oocytes reaching metaphase II between the groups. However, the proportion of blastocysts was highest in treatment groups CM 1C and CM 2C (P<0.05). The type of serum did not alter the positive effect of rbST on the developmental competence of embryos. The fluorescence intensity of metabolically active mitochondria measured by intensity per oocyte (Em 570) after MitoTracker CMTM Ros Orange labeling was significantly increased in oocytes matured in the presence of 10 ng/ml rbST and granulosa cells (309.21 vs. 119.97 µA; P<0.01). In parallel, the concentration of [Ca 2+ ]is in oocytes, determined using fluorophore chlortetracycline, was significantly decreased (0.85 ± 0.02 vs. 0.97 ± 0.03 AU; P<0.05). Based on these results, we concluded that rbST, in interaction with granulosa cells stimulates the oxidative activity of ooplasmic mitochondria and decreases the content of [Ca 2+ ]is in oocytes. These facts support the hypothesis that somatotropin influences the developmental competence of bovine oocytes during maturation in vitro, and this effect can be modulated by granulosa cells.
The aim of this study is to identify the effects of progesterone (PRG) on the capacitation and the acrosome reaction in bovine spermatozoa. The fresh sperm samples were incubated with and without capacitation inductors (heparin, dibutyryl cyclic adenosine monophosphate (dbcAMP)), hormones (prolactin (PRL), PRG), inhibitors of microfilaments (cytochalasin D) and microtubules (nocodazole) during capacitation and acrosome reactions. The functional status of spermatozoa was examined using the chlortetracycline assay. Supplementation of heparin stimulated capacitation in the presence and absence of PRG. Cytochalasin D blocked the stimulating effect of heparin on capacitation. The addition of PRL during capacitation (without PRG) did not affect the functional status of spermatozoa, while in PRG-treated cells PRL stimulated the acrosome reaction. PRL (with and without PRG) increased the acrosome reaction in capacitated cells. These PRL-dependent effects were inhibited by nocodazole. During the acrosome reaction, in presence of dbcAMP, PRG decreased the proportion of acrosome-reacted cells compared to PRG-untreated cells. This effect in PRG-treated cells was canceled in the presence of nocodazole. In conclusion, PRG under the action of PRL and dbcAMP determines the changes in the functional status of native sperm cells, which indicates PRG modulating effect on the indicators of post-ejaculatory maturation of spermatozoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.