Thermoplasmonic effects notably improve the efficiency of vacuum membrane distillation, an economically sustainable tool for high-quality seawater desalination. Poly(vinylidene fluoride) (PVDF) membranes filled with spherical silver nanoparticles are used, whose size is tuned for the aim. With the addition of plasmonic nanoparticles in the membrane, the transmembrane flux increases by 11 times, and, moreover, the temperature at the membrane interface is higher than bulk temperature.
Molecular targeted cancer therapy mediated by nanoparticles (NPs) is a promising strategy to overcome the lack of specificity of conventional chemotherapeutic agents. In this context, the prostate-specific membrane antigen (PSMA) has demonstrated a powerful potential for the management of prostate cancer (PCa). Cancer chemoprevention by phytochemicals is emerging as a suitable approach for the treatment of early carcinogenic processes. Since (-)-epigallocatechin 3-gallate (EGCG) has shown potent chemopreventive efficacy for PCa, we designed and developed novel targeted NPs in order to selectively deliver EGCG to cancer cells. Herein, to explore the recent concept of "nanochemoprevention", we present a study on EGCG-loaded NPs consisting of biocompatible polymers, functionalized with small molecules targeting PSMA, that exhibited a selective in vitro efficacy against PSMA-expressing PCa cells. This approach could be beneficial for high risk patients and would fulfill a significant therapeutic need, thus opening new perspectives for novel and effective treatment for PCa.
Frontal polymerization has been successfully used to synthesize poly(N-isopropylacrylamide) nanocomposite hydrogels containing graphene. The latter was directly achieved by ultrasound treatment of a dispersion of graphite in N-methylpyrrolidone. The dispersion, having the concentration of 2.21 g L À1 , was characterized by TEM analysis and mixed with suitable amounts of N-isopropylacrylamide for the synthesis of graphene-containing nanocomposite polymer hydrogels. The nanocomposite hydrogels were analyzed by SEM and Raman spectroscopy, and their swelling and rheological properties were investigated. It was found that graphene strongly influences the swelling ratio, dramatically increasing it, even if present in small amounts. Finally, the rheological properties of the hydrogels were correlated with the graphene content: G 0 modulus and complex viscosity were found to increase with increasing nanofiller concentration, thus indicating the occurrence of good interactions between the two phases. Nevertheless, at a high concentration (i.e., 0.13 wt.%), graphene showed a lubrication effect, lowering the rheological parameters and approaching the same pseudoplastic behaviour of the unfilled material.
Docetaxel (Dtx) chemotherapy is the optional treatment in patients with hormone-refractory metastatic prostate cancer, and Dtx-loaded polymeric nanoparticles (NPs) have the potential to induce durable clinical responses. However, alternative formulations are needed to overcome the serious side effects, also due to the adjuvant used, and to improve the clinical efficacy of the drug.In the present study, two novel biodegradable block-copolymers, poly(lactide-co-caprolactone) (PLA-PCL) and poly(lactide-co-caprolactone-co-glycolide) (PLGA-PCL), were explored for the formulation of Dtx-loaded NPs and compared with PLA- and PLGA-NPs. The nanosystems were prepared by an original nanoprecipitation method, using Pluronic F-127 as surfactant agent, and were characterized in terms of morphology, size distribution, encapsulation efficiency, crystalline structure, and in vitro release. To evaluate the potential anticancer efficacy of a nanoparticulate system, in vitro cytotoxicity studies on human prostate cancer cell line (PC3) were carried out. NPs were found to be of spherical shape with an average diameter in the range of 100 to 200 nm and a unimodal particle size distribution. Dtx was incorporated into the PLGA-PCL NPs with higher (p < 0.05) encapsulation efficiency than that of other polymers. Differential scanning calorimetry suggested that Dtx was molecularly dispersed in the polymeric matrices. In vitro drug release study showed that release profiles of Dtx varied on the bases of characteristics of polymers used for formulation. PLA-PCL and PLGA-PCL drug loaded NPs shared an overlapping release profiles, and are able to release about 90% of drug within 6 h, when compared with PLA- and PLGA-NPs. Moreover, cytotoxicity studies demonstrated advantages of the Dtx-loaded PLGA-PCL NPs over pure Dtx in both time- and concentration-dependent manner. In particular, an increase of 20% of PC3 growth inhibition was determined by PLGA-PCL NPs with respect to free drug after 72 h incubation and at all tested Dtx concentration. In summary, PLGA-PCL copolymer may be considered as an attractive and promising polymeric material for the formulation of Dtx NPs as delivery system for prostate cancer treatment, and can also be pursued as a validated system in a more large context.
Chemoprevention of human cancer(s) is a viable option for cancer control, especially when chemopreventive intervention is involved during the early stages of the carcinogenesis process. Naturally occurring bioactive food components, such as dietary polyphenols, have shown good antioxidant activity and other beneficial activities. In addition, compounds belonging to the polyphenolic chemical class may play promising roles in cancer prevention. Among them, the phytoalexin resveratrol has demonstrated antiproliferative effects, as well as the ability to inhibit initiation and promotion of induced cancer progression in a wide variety of tumor models. However, resveratrol, like other natural polyphenols, is an extremely photosensitive compound with low chemical stability and limited bioavailibility, which limit the therapeutic application of its beneficial effects. In this context, the development of innovative formulation strategies able to overcome physicochemical and pharmacokinetic limitations of this compound could be beneficial. This may be achieved via nanotechnology approaches utilizing suitable carriers that allow slow, sustained, and controlled release of the encapsulated agent. This review focuses on the recent developments of novel nanoformulations used to deliver sustained levels of resveratrol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.