We propose a simple microfluidic device for protein preconcentration based on the electrokinetic trapping principle. It comprises a narrow Nafion strip that is simply cut from a commercial membrane and is integrated into a molded poly(dimethylsiloxane) (PDMS) microfluidic structure using a guiding channel. Mechanically clamping the PDMS/Nafion assembly with a glass substrate results in a rapid prototypable, leak-tight, and easily disposable device. Our device preconcentrates negatively charged fluorescent proteins located at the anodic microfluidic compartment side of the Nafion strip within a few minutes and up to a concentration factor of 10(4). Moreover, we present a numerical study of the preconcentration effect by solving the coupled Poisson, Nernst-Planck, and Navier-Stokes equations for our type of device, which provides microscopic insight into the mechanism of preconcentration. The electrical field across the ion-permselective Nafion generates concentration polarization, i.e., ion depletion at the anodic side and ion enrichment at the cathodic side for both types of ions, with a local excess of mobile positive ions in the depleted concentration polarization zone, inducing a nonequilibrium electrical double layer in close proximity to the Nafion membrane. A voltage difference applied over the anodic compartment is used to generate the electrophoretic flow velocity of the negatively charged tracer biomolecules. This, in combination with the electroosmotic flow in the opposite direction, which originates from the fixed charges on the channel walls and the induced space charge near the membrane, provides the basis for the local preconcentration of the negative tracer biomolecules.
The lanthanide binuclear helicate [Eu(2)(L(C2(CO(2)H)))(3)] is coupled to avidin to yield a luminescent bioconjugate EuB1 (Q = 9.3%, tau((5)D(0)) = 2.17 ms). MALDI/TOF mass spectrometry confirms the covalent binding of the Eu chelate and UV-visible spectroscopy allows one to determine a luminophore/protein ratio equal to 3.2. Bio-affinity assays involving the recognition of a mucin-like protein expressed on human breast cancer MCF-7 cells by a biotinylated monoclonal antibody 5D10 to which EuB1 is attached via avidin-biotin coupling demonstrate that (i) avidin activity is little affected by the coupling reaction and (ii) detection limits obtained by time-resolved (TR) luminescence with EuB1 and a commercial Eu-avidin conjugate are one order of magnitude lower than those of an organic conjugate (FITC-streptavidin). In the second part of the paper, conditions for growing MCF-7 cells in 100-200 microm wide microchannels engraved in PDMS are established; we demonstrate that EuB1 can be applied as effectively on this lab-on-a-chip device for the detection of tumour-associated antigens as on MCF-7 cells grown in normal culture vials. In order to exploit the versatility of the ligand used for self-assembling [Ln(2)(L(C2(CO(2)H)))(3)] helicates, which sensitizes the luminescence of both Eu(III) and Tb(III) ions, a dual on-chip assay is proposed in which estrogen receptors (ERs) and human epidermal growth factor receptors (Her2/neu) can be simultaneously detected on human breast cancer tissue sections. The Ln helicates are coupled to two secondary antibodies: ERs are visualized by red-emitting EuB4 using goat anti-mouse IgG and Her2/neu receptors by green-emitting TbB5 using goat anti-rabbit IgG. The fact that the assay is more than 6 times faster and requires 5 times less reactants than conventional immunohistochemical assays provides essential advantages over conventional immunohistochemistry for future clinical biomarker detection.
We propose an original concept for a sandwich immunoassay that is completely performed on-chip using streptavidin-coated beads as substrate. The latter are electrostatically self-assembled on aminosilane micropatterns at the bottom of a microfluidic channel. We use mouse IgG diluted in phosphate buffered saline (PBS) with 1% bovine serum albumin (BSA) solution as target antigen. The fluorescent sandwich immunocomplex is formed on the beads during the operation of the chip both in stop-flow and continuous-flow modes. Target mouse IgG antigen is detected down to a concentration of 15 ng/mL in stop-flow mode and 250 pg/mL in continuous-flow mode, using only 1300 nL of sample volume. We also demonstrate the possibility of simultaneous detection of two different antigens in a PBS-BSA solution using a dual microfluidic channel structure.
PDMS-based microfluidic devices combined with lanthanide-based immunocomplexes have been successfully tested for the multiplex detection of biomarkers on cancerous tissues, revealing an enhanced sensitivity compared to classical organic dyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.