KRASG12C has emerged as a promising target
in the treatment
of solid tumors. Covalent inhibitors targeting the mutant cysteine-12
residue have been shown to disrupt signaling by this long-“undruggable”
target; however clinically viable inhibitors have yet to be identified.
Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99)
we identified in KRASG12C to identify inhibitors suitable
for clinical development. Structure-based design efforts leading to
the identification of a novel quinazolinone scaffold are described,
along with optimization efforts that overcame a configurational stability
issue arising from restricted rotation about an axially chiral biaryl
bond. Biopharmaceutical optimization of the resulting leads culminated
in the identification of AMG 510, a highly potent, selective, and
well-tolerated KRASG12C inhibitor currently in phase I
clinical trials (NCT03600883).
Success in the design of targeted covalent inhibitors depends in part on a knowledge of the factors influencing electrophile reactivity. In an effort to further develop an understanding of structure-reactivity relationships among N-arylacrylamides, we determined glutathione (GSH) reaction rates for a family of N-arylacrylamides independently substituted at ortho-, meta-, and para-positions with 11 different groups common to inhibitor design. We find that substituent effects on reaction rates show a linear Hammett correlation for ortho-, meta-, and para-substitution. In addition, we note a correlation between (1)H and (13)C NMR chemical shifts of the acrylamide with GSH reaction rates, suggesting that NMR chemical shifts may be a convenient surrogate measure of relative acrylamide reactivity. Density functional theory calculations reveal a correlation between computed activation parameters and experimentally determined reaction rates, validating the use of such methodology for the screening of synthetic candidates in a prospective fashion.
Gas-phase ozone-alkene reactions are known to produce the hydroxyl radical (OH) in high yields. Most mechanistic studies to date have focused on the role of syn carbonyl oxides; however, OH production from ethene ozonolysis indicates a second, poorly understood OH-forming channel, which may contribute to OH production in the ozonolysis of substituted alkenes as well. Using laser-induced fluorescence, we have measured OH and OD yields from the ozonolysis of two partially deuterated alkenes, cis- and trans-3-hexene-3,4-d2. OD is formed from both alkenes, indicating a pathway of hydroxyl-radical formation involving vinylic hydrogens, accounting for one-third of total OH formation from cis-3-hexene. The lack of a significant kinetic isotope effect suggests this pathway is the "hot acid" channel, arising from rearrangement of anti carbonyl oxides. Measured yields also allow for the estimation of syn:anti carbonyl oxide ratios, approximately 50:50 for trans-3-hexene and approximately 20:80 for cis-3-hexene, qualitatively consistent with our understanding of ozonide decomposition pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.