We have studied the intrinsic doping level and gate hysteresis of graphene-based field effect transistors (FETs) fabricated over Si/SiO(2) substrates. It was found that the high p-doping level of graphene in some as-prepared devices can be reversed by vacuum degassing at room temperature or above depending on the degree of hydrophobicity and/or hydration of the underlying SiO(2) substrate. Charge neutrality point (CNP) hysteresis, consisting of the shift of the charge neutrality point (or Dirac peak) upon reversal of the gate voltage sweep direction, was also greatly reduced upon vacuum degassing. However, another type of hysteresis, consisting of the change in the transconductance upon reversal of the gate voltage sweep direction, persists even after long-term vacuum annealing at 200 °C, when SiO(2) surface-bound water is expected to be desorbed. We propose a mechanism for this transconductance hysteresis that involves water-related defects, formed during the hydration of the near-surface silanol groups in the bulk SiO(2), that can act as electron traps.
We report the synthesis of thermoelectric compounds, Cu3SbSe3 and Cu3SbSe4, employing the conventional fusion method followed by spark plasma sintering. Their thermoelectric properties indicated that despite its higher thermal conductivity, Cu3SbSe4 exhibited a much larger value of thermoelectric figure-of-merit as compared to Cu3SbSe3, which is primarily due to its higher electrical conductivity. The thermoelectric compatibility factor of Cu3SbSe4 was found to be ∼1.2 as compared to 0.2 V−1 for Cu3SbSe3 at 550 K. The results of the mechanical properties of these two compounds indicated that their microhardness and fracture toughness values were far superior to the other competing state-of-the-art thermoelectric materials.
Zinc oxide (ZnO) one-dimensional nanostructures are extensively used in ultra-violet (UV) detection. To improve the optical sensing capability of ZnO, various nickel oxide (NiO) based p–n junctions have been employed. ZnO/NiO heterojunction based sensing has been limited to UV detection and not been extended to the visible region. In the present work, p-NiO/n-ZnO composite nanowire (NW) heterojunction based UV-visible photodetector is fabricated. A porous anodic aluminum oxide template based electrochemical deposition method is adopted for well separated and vertically aligned growth of composite NWs. The photoresponse is studied in an out of plane contact configuration. The fabricated photodetector shows fast response under UV-visible light with a rise and decay time of tens of ms. The wide spectral photoresponse is analyzed in terms of conduction from defect states of ZnO and interfacial defects during p–n junction formation. Light interaction with heterojunction along the length of the composite NW results in enhanced visible photoresponse of the detector and is further supported by simulation.
Temperature (T)-dependent optical
response of gold nanoparticle
(NP) dimer of radii, 5–60 nm surrounded by air medium is simulated
and studied using finite element method (FEM). Temperature-dependent
damping parameter from Drude-Lorentz dielectric model having contribution
from different scattering mechanisms and volume expansion is taken
into consideration for studying surface plasmon resonance (SPR) behavior.
A red shift and band broadening of SPR is observed with increase in
temperature for all sizes with significant shift for dimer of radii
40–60 nm. A size-independent parameter is extracted from the
study, showing similar temperature-dependence, irrespective of dimer
size, and can be used as an important parameter in temperature sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.