A novel ultrafast laser processing technique is used to create self-assembled micro/nano structures on a silicon surface for efficient light trapping. Under appropriate experimental conditions, light reflection (including scattering) of the Si surface has been reduced to less than 3% for the entire solar spectrum and the material appears completely black to the naked eye. A post-chemical cleaning is applied to remove laser-redeposited material and induced defects. Optical, morphological, and structural characterizations have been carried out on as-laser-treated and post-chemically cleaned surfaces. Finally, we report for the first time the total efficiency of over 14% and high external quantum efficiency (EQE) results on photovoltaic devices fabricated on the ultrafast-laser-induced micro/nano structured silicon wafer, which can be further improved upon process optimization.
Abstract-In this paper, we propose a simple methodology for the extraction of the top and sidewall mobility in FinFET like triple-gate device architectures. The underlying assumptions are outlined and verified by simulations and experiments. Using this model, the top and sidewall mobility on both n-and p-channel FinFETs, fabricated with various fin-patterning processes and gate dielectrics, was extracted. It is shown that the choice of the hard mask and corner-rounding processes and the gate dielectric impacts the top and sidewall mobility differently. The proposed methodology provides a powerful tool for technologists to optimize the gate stack and fin-patterning processes. It also provides a simple model to capture the anisotropy of mobility in device and circuit simulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.