ABSTRACT. The main purpose of this research was to analyze the relation of the genetic polymorphisms frequently expressed by antigen-presenting cells, erythrocytes and malaria susceptibility/resistance with the human malaria infection cases. The sample used consisted of 23 Plasmodium vivax (Pv)-and P. falciparum (Pf)-infected patients, and 21 healthy individuals as a control group, from the Baixo Amazonas population in Pará, Brazil. The Asp299Gly polymorphisms in the Toll-like receptor 4 (TLR4), and Gly42Asp, Arg89Cys, Ala100Thr, and T-33C in the Duffy gene (FY) were analyzed by restriction fragment length polymorphism-polymerase chain reaction. The Lys1590Glu and Arg1601Gly polymorphisms in the complement receptor type 1 (CR1) were analyzed by DNA sequencing. According to the results obtained and statistical analysis considering a significance level or α = 0.01, we conclude that the low heterozygote frequency (2.27%) for the Asp299Gly mutation, detected in the TLR4 gene, is not related to the Pv and Pf infections in the patients analyzed. Also, the promoter region GATA-1 analysis of the FY gene in the Pv-infected patients showed that the heterozygote frequency for the T-33C mutation (11.36% of the infected patients and 20.45% of the control patients) is not related to infection resistance. Regarding the CR1 gene, the observed heterozygote frequency (9.09%) for the Arg1601Gly mutation in Pf-infected patients when compared to heterozygote frequency in the control group (18.18%) suggests that there is no correlation with infection resistance.
The western mesoregion of the state of Santa Catarina (SC), Southern Brazil, was heavily affected as a whole by the COVID-19 pandemic in early 2021. This study aimed to evaluate the dynamics of the SARS-CoV-2 virus spreading patterns in the SC state from March 2020 to April 2021 using genomic surveillance. During this period, there were 23 distinct variants, including Beta and Gamma, among which the Gamma and related lineages were predominant in the second pandemic wave within SC. A regionalization of P.1-like-II in the Western SC region was observed, concomitant to the increase in cases, mortality, and the case fatality rate (CFR) index. This is the first evidence of the regionalization of the SARS-CoV-2 transmission in SC and it highlights the importance of tracking the variants, dispersion, and impact of SARS-CoV-2 on the public health systems.
Clostridioides difficile BI/NAP1/ribotype 027 is an epidemic hypervirulent strain found worldwide, including in Latin America. We examined the genomes and exoproteomes of two multilocus sequence type (MLST) clade 2 C. difficile strains considered hypervirulent: ICC-45 (ribotype SLO231/UK[CE]821), isolated in Brazil, and NAP1/027/ST01 (LIBA5756), isolated during a 2010 outbreak in Costa Rica. C. difficile isolates were cultured and extracellular proteins were analyzed using high-performance liquid chromatography-tandem mass spectrometry. Genomic analysis revealed that these isolates shared most of the gene composition. Only 83 and 290 NAP1/027 genes were considered singletons in ICC-45 and NAP1/027, respectively. Exoproteome analysis revealed 197 proteins, of which 192 were similar in both strains. Only five proteins were exclusive to the ICC-45 strain. These proteins were involved with catalytic and binding functions and indirectly interacted with proteins related to pathogenicity. Most proteins, including TcdA, TcdB, flagellin subunit, and cell surface protein, were overrepresented in the ICC-45 strain; 14 proteins, including mature S-layer protein, were present in higher proportions in LIBA5756. Data are available via ProteomeXchange with identifier PXD026218. These data show close similarity between the genome and proteins in the supernatant of two strains with hypervirulent features isolated in Latin America and underscore the importance of epidemiological surveillance of the transmission and emergence of new strains.
Colibacillosis is a disease caused by Escherichia coli and remains a major concern in poultry production, as it leads to significant economic losses due to carcass condemnation and clinical symptoms. The development of antimicrobial resistance is a growing problem of worldwide concern. Lysogenic bacteriophages are effective vectors for acquiring and disseminating antibiotic resistance genes (ARGs). The aim of this study was to investigate the complete genome of Escherichia coli isolates from the femurs of Brazilian broiler chickens in order to investigate the presence of antimicrobial resistance genes associated with bacteriophages. Samples were collected between August and November 2021 from broiler batches from six Brazilian states. Through whole genome sequencing (WGS), data obtained were analyzed for the presence of antimicrobial resistance genes. Antimicrobial resistance genes against the aminoglycosides class were detected in 79.36% of the isolates; 74.6% had predicted sulfonamides resistance genes, 63.49% had predicted resistance genes against β-lactams, and 49.2% of the isolates had at least one of the tetracycline resistance genes. Among the detected genes, 27 have been described in previous studies and associated with bacteriophages. The findings of this study highlight the role of bacteriophages in the dissemination of ARGs in the poultry industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.