The suitability of gravel wash mud (GWM), a sludge waste from gravel quarrying, is examined for its use as a partial Ordinary Portland cement (OPC) clinker substitute. The gravel wash mud was dried, milled into a fine powder and calcined at 750°C, 850°C and 950°C. In this study, various characterisation methods including particle size distribution (PSD), X-ray fluorescence (XRF), X-ray diffraction (XRD) and the simultaneous thermal analysis (STA) were applied on the calcined GWM powders to determine the optimal calcination temperature. Over 200 specimens were prepared based on different cement paste and mortar mixes to investigate the potential of calcined GWM powders as SCMs. The pozzolanic activity of the GWM powders was verified by applying strength-based evaluation methods, simultaneous thermal analysis and SEM on hardened samples. Very promising strengthenhancing capacities were observed for samples containing GWM powders calcined at 850°C with a OPC replacement level of 20 wt.%.
Gravel wash mud (GWM), a waste product from gravel mining was dried and processed into a fine powder to be activated by different concentrations of sodium hydroxide (NaOH) solutions for the synthesis of an alkali-activated binder. The GWM powders were thermally treated at five different calcination temperatures 550, 650, 750, 850 and 950°C. The characterisation of the raw material comprises the particle size distribution (PSD) by laser granulometry, the chemical and mineralogical composition by X-ray fluorescence and X-ray diffraction analysis respectively, and simultaneous thermal analysis. The performance of the alkali-activated binders were examined using compression strength tests and the microstructure was observed using scanning electron microscopy (SEM). The GWM was classified as an aluminosilicate raw material with kaolinite and illite as main clay minerals. Furthermore, a mean particle size around 6.50 μm was determined for the uncalcined and calcined GWM powders. The SEM images of the developed binders showed the formation of a compact microstructure, however, relatively low strengths were achieved. This preliminary study highlights an example of an aluminosilicate prime material, which shows very promising chemical and mineralogical characteristics, but its suitability for alkaline activation without further additives was not confirmed as far as performancebased criteria are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.