The Crimean autochthonous grape varieties are unique by their origin and serve as a valuable source for breeding new cultivars with increased salt and frost resistance, as well as high-quality berries. However, they suffer from fungal pathogens, as the dry and hot summer months contribute to the epiphytotic course of diseases. An increase in the resistance of Crimean grape varieties is currently achieved through interspecific hybridization. In this study, we describe the genetic and agrobiological diversity of three hybrid populations obtained using the Vitis interspecific hybrid ‘Magarach 31-77-10′ as a female parent and Muscadinia rotundifolia × Vitis vinifera BC5 hybrid plants as male parents. The hybrid nature of the populations was assessed using RADseq high-throughput genotyping. We discovered 12,734 SNPs, which were common to all three hybrid populations. We also proved with the SSR markers that the strong powdery and downy mildew resistance of the paternal genotypes is determined by the dominant Run1/Rpv1 locus inherited from M. rotundifolia. As a result, the disease development score (R, %) for both mildew diseases in the female parent ‘Magarach 31-77-10’ was three times higher than in male parents 2000-305-143 and 2000-305-163 over two years of phytopathological assessment. The highest values of yield-contributing traits (average bunch weight ~197 g and 1.3 kg as yield per plant) were detected in the population 4-11 (♀M. No. 31-77-10 × 2000-305-163). Despite the epiphytotic development of PM, the spread of oidium to the vegetative organs of hybrids 4-11 did not exceed 20%. Some hybrid genotypes with high productivity and resistance to pathogens were selected for further assessment as promising candidates for new varieties.
The modern level of knowledge development in the field of fundamental sciences makes it possible to reliably investigate the processes of evolution. The purpose of our research was to determine the need to establish the existing evolutionary transformations in resistance to abiotic and biotic stress factors of the biosphere in a grape plant, which may be natural for all horticulture crops, and on the other hand, based on the postulate of natural and experimental evolution, to prove the processes of natural evolution as a result of experimental breeding. The results obtained in the study of particular issues of genetics of grapes, based on the existence of general biological regularities, can be prolonged for interpretation, with reference to other horticulture crops. We studied the genetics of grapes, in particular crossability, the inheritance of signs and characteristics, the establishment of regularities in the display of selection value, and heterosis, allowing us to formulate the principles of modeling a new variety. Investigating the process of creating grape varieties that are resistant to biotic factor, it was suggested to consider it from the point of view of the coevolution of the plant and pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.