To achieve exascale computing, fundamental hardware architectures must change. The most significant consequence of this assertion is the impact on the scientific applications that run on current high performance computing (HPC) systems, many of which codify years of scientific domain knowledge and refinements for contemporary computer systems. In order to adapt to exascale architectures, developers must be able to reason about new hardware and determine what programming models and algorithms will provide the best blend of performance and energy efficiency into the future. While many details of the exascale architectures are undefined, an abstract machine model is designed to allow application developers to focus on the aspects of the machine that are important or relevant to performance and code structure. These models are intended as communication aids between application developers and hardware architects during the co-design process. We use the term proxy architecture to describe a parameterized version of an abstract machine model, with the parameters added to elucidate potential speeds and capacities of key hardware components. These more detailed architectural models are formulated to enable discussion between the developers of analytic models and simulators and computer hardware architects. They allow for application performance analysis and hardware optimization opportunities. In this report our goal is to provide the application development community with a set of models that can help software developers prepare for exascale. In addition, use of proxy architectures, through the use of proxy architectures, we can enable a more concrete exploration of how well application codes map onto the future architectures.
Bugs in cache coherence protocols can cause system failures. Despite many advances, verification runs into state explosion for even moderately-sized systems. As multicores' core counts increase, coherence verifiability continues to be a key problem. A recent proposal, called fractal coherence, avoids the state explosion problem by applying the idea of observational equivalence between a larger system and its smaller sub-systems. A fractal protocol for a larger system is verified by design if a minimal sub-system is verified completely. While fractal coherence is a significant step forward, there are two shortcomings: (1) Architectural limitation: To achieve fractal coherence's logical hierarchy, TreeFractal, the specific fractal protocol, employs a tree architecture where each miss traverses many levels up and down the tree and each level redundantly holds its sub-trees' coherence tags.(2) Protocol restrictions: TreeFractal imposes a restriction on responses to read requests that forces read requests to obtain clean blocks from the nearest sharer even if the shared L2 or L3 is faster. These limitations impose significant performance and coherence tag state overheads. In this paper, we propose architectural support for coherence protocols to achieve scalable performance and verifiability. To address the architectural limitation, we propose FlatFractal, a directory-based architecture which decouples fractal coherence's logical hierarchy from the architecture and eliminates redundant tag state. To address the protocol restriction, we propose a simple change to the protocol that, while preserving observational equivalence, allows read requests to obtain the blocks from the shared L2 or L3. Our simulations show that for 16 cores, FlatFractal performs, on average, 57% better than TreeFractal and within 3% of a conventional directory.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.