We present 11 detections of FRB 121102 in ∼3 h of observations during its ‘active’ period on the 10th of 2019 September. The detections were made using the newly deployed MeerTRAP system and single pulse detection pipeline at the MeerKAT radio telescope in South Africa. Fortuitously, the Nançay radio telescope observations on this day overlapped with the last hour of MeerKAT observations and resulted in four simultaneous detections. The observations with MeerKAT’s wide band receiver, which extends down to relatively low frequencies (900–1670 MHz usable L-band range), have allowed us to get a detailed look at the complex frequency structure, intensity variations, and frequency-dependent sub-pulse drifting. The drift rates we measure for the full-band and sub-banded data are consistent with those published between 600 and 6500 MHz with a slope of −0.147 ± 0.014 ms−1. Two of the detected bursts exhibit fainter ‘precursors’ separated from the brighter main pulse by ∼28 and ∼34 ms. A follow-up multi-telescope campaign on the 6th and 8th of 2019 October to better understand these frequency drifts and structures over a wide and continuous band was undertaken. No detections resulted, indicating that the source was ‘inactive’ over a broad frequency range during this time.
The radio-emitting neutron star population encompasses objects with spin periods ranging from milliseconds to tens of seconds. As they age and spin more slowly, their radio emission is expected to cease. We present the discovery of an ultra-long period radio-emitting neutron star, PSR J0901−4046 , with spin properties distinct from the known spin and magnetic-decay powered neutron stars. With a spinperiod of 75.88 s, a characteristic age of 5.3 Myr, and a narrow pulse duty-cycle, it is uncertain how radio emission is generated and challenges our current understanding of how these systems evolve. The radio emission has unique spectro-temporal properties such as quasi-periodicity and partial nulling that provide important clues to the emission mechanism. Detecting similar sources is observationally challenging, which implies a larger undetected population. Our discovery establishes the existence of ultra-long period neutron stars, suggesting a possible connection to the evolution of highly magnetized neutron stars, ultra-long period magnetars, and fast radio bursts.
We have used the central 44 antennas of the new 64-dish MeerKAT radio telescope array to conduct a deep search for new pulsars in the core of nine globular clusters. This has led to the discovery of eight new millisecond pulsars in six different clusters. Two new binaries, 47 Tuc ac and 47 Tuc ad, are eclipsing “spiders”, featuring compact orbits (≲ 0.32 days), very low-mass companions and regular occultations of their pulsed emission. The other three new binary pulsars (NGC 6624G, M62G, and Ter 5 an) are in wider (>0.7 days) orbits, with companions that are likely to be white dwarfs or neutron stars. NGC 6624G has a large eccentricity of e ≃ 0.38, which enabled us to detect the rate of advance of periastron. This suggests that the system is massive, with a total mass of Mtot = 2.65 ± 0.07 M⊙. Likewise, for Ter 5 an, with e ≃ 0.0066, we obtain Mtot = 2.97 ± 0.52 M⊙. The other three new discoveries (NGC 6522D, NGC 6624H and NGC 6752F) are faint isolated pulsars. Finally, we have used the whole MeerKAT array and synthesized 288 beams, covering an area of ∼2 arcmin in radius around the center of NGC 6624. This has allowed us to localize many of the pulsars in the cluster, demonstrating the beamforming capabilities of the TRAPUM software backend and paving the way for the upcoming MeerKAT globular cluster pulsar survey.
Magnetars are a promising candidate for the origin of Fast Radio Bursts (FRBs). The detection of an extremely luminous radio burst from the Galactic magnetar SGR J1935+2154 on 2020 April 28 added credence to this hypothesis. We report on simultaneous and non-simultaneous observing campaigns using the Arecibo, Effelsberg, LOFAR, MeerKAT, MK2 and Northern Cross radio telescopes and the MeerLICHT optical telescope in the days and months after the April 28 event. We did not detect any significant single radio pulses down to fluence limits between 25 mJy ms and 18 Jy ms. Some observing epochs overlapped with times when X-ray bursts were detected. Radio images made on four days using the MeerKAT telescope revealed no point-like persistent or transient emission at the location of the magnetar. No transient or persistent optical emission was detected over seven days. Using the multi-colour MeerLICHT images combined with relations between DM, NH and reddening we constrain the distance to SGR J1935+2154, to be between 1.5 and 6.5 kpc. The upper limit is consistent with some other distance indicators and suggests that the April 28 burst is closer to two orders of magnitude less energetic than the least energetic FRBs. The lack of single-pulse radio detections shows that the single pulses detected over a range of fluences are either rare, or highly clustered, or both. It may also indicate that the magnetar lies somewhere between being radio-quiet and radio-loud in terms of its ability to produce radio emission efficiently.
Large-scale beamforming with radio interferometers has the potential to revolutionize the science done with pulsars and fast radio bursts by improving the survey efficiency for these sources. We describe a wide-field beamformer for the MeerKAT radio telescope and outline strategies to optimally design such surveys. For software implementation of these techniques, Mosaic is introduced and its application in the MeerKAT telescope is presented. We show initial results using the beamformer by observing a globular cluster to track several pulsars simultaneously and demonstrate the source localization capability of this observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.