We have studied the transient stages in the formation of unilamellar vesicles with millisecond time resolution. The self-assembly was initiated by rapid mixing of equimolar amounts of anionic and zwitterionic micelles and the transient micellar entities were probed by time-resolved small-angle x-ray scattering. Within the mixing time, original micelles transformed to disklike micelles which evolved further to a critical size and then closed to form monodisperse unilamellar vesicles within a second. Subsequent growth led to an unexpected broadening of the vesicle size distribution.
Muscle force results from the interaction of the globular heads of myosin-II with actin filaments. We studied the structure-function relationship in the myosin motor in contracting muscle fibers by using temperature jumps or length steps combined with time-resolved, low-angle X-ray diffraction. Both perturbations induced simultaneous changes in the active muscle force and in the extent of labeling of the actin helix by stereo-specifically bound myosin heads at a constant total number of attached heads. The generally accepted hypothesis assumes that muscle force is generated solely by tilting of the lever arm, or the light chain domain of the myosin head, about its catalytic domain firmly bound to actin. Data obtained suggest an additional force-generating step: the "roll and lock" transition of catalytic domains of non-stereo-specifically attached heads to a stereo-specifically bound state. A model based on this scheme is described to quantitatively explain the data.
Structural and mechanical changes occurring in the myosin filament and myosin head domains during the development of the isometric tetanus have been investigated in intact frog muscle fibres at 4• C and 2.15 μm sarcomere length, using sarcomere level mechanics and X-ray diffraction at beamline ID2 of the European Synchrotron Radiation Facility (Grenoble, France). The time courses of changes in both the M3 and M6 myosin-based reflections were recorded with 5 ms frames using the gas-filled RAPID detector (MicroGap Technology). Following the end of the latent period (11 ms after the start of stimulation), force increases to the tetanus plateau value (T 0 ) with a half-time of 40 ms, and the spacings of the M3 and M6 reflections (S M3 and S M6 ) increase by 1.5% from their resting values, with time courses that lead that of force by ∼10 and ∼20 ms, respectively. These temporal relations are maintained when the increase of force is delayed by ∼10 ms by imposing, from 5 ms after the first stimulus, 50 nm (half-sarcomere) −1 shortening at the velocity (V 0 ) that maintains zero force. Shortening at V 0 transiently reduces S M3 following the latent period and delays the subsequent increase in S M3 , but only delays the S M6 increase without a transient decrease. Shortening at V 0 imposed at the tetanus plateau causes an abrupt reduction of the intensity of the M3 reflection (I M3 ), whereas the intensity of the M6 reflection (I M6 ) is only slightly reduced. The changes in half-sarcomere stiffness indicate that the isometric force at each time point is proportional to the number of myosin heads bound to actin. The different sensitivities of the intensity and spacing of the M3 and M6 reflections to the mechanical responses support the view that the M3 reflection in active muscle originates mainly from the myosin heads attached to the actin filament and the M6 reflection originates mainly from a fixed structure in the myosin filament signalling myosin filament length changes during the tetanus rise.
A new beamline (MPW6.2) has been designed and built for the study of materials during processing where three synchrotron techniques, SAXS, WAXS and XAS, are available simultaneously. It has been demonstrated that Rietveld refinable data can be collected from silicon SRM 640b over a 60 degrees range in a time scale of 1 s. The data have been refined to a chi(2) of 2.4, the peaks fitting best to a Pearson VII function or with fundamental parameters. The peak halfwidths have been found to be approximately constant at 0.06 degrees over a 120 degrees angular range indicating that the instrumental resolution function has matched its design specification. A quantitative comparison of data sets collected on the same isotactic polypropylene system on MPW6.2 and DUBBLE at the ESRF shows a 17% improvement in angular resolution and a 1.8 improvement in peak-to-background ratio with the RAPID2 system; the ESRF data vary more smoothly across detector channels. The time-dependent wide-angle XRD was tested by comparing a hydration reaction of gypsum-bassanite-anhydrite with energy-dispersive data collected on the same system on the same time scale. Three sample data sets from the reaction were selected for analysis and gave an average chi(2) of 3.8. The Rietveld-refined lattice parameters are a good match with published values and the corresponding errors show a mean value of 3.3 x 10(-4). The data have also been analysed by the Pawley decomposition phase-modelling technique demonstrating the ability of the station to quickly and accurately identify new phases. The combined SAXS/WAXS capability of the station was tested with the crystallization and spinodal decomposition of a very dilute polymer system. Our measurements show that the crystallization of a high-density co-polymer (E76B38) as low as 0.5% by weight can be observed in solution in hexane. The WAXS and SAXS data sets were collected on the same time scale. The SAXS detector was calibrated using a collagen sample that gave 30 orders of diffraction in 1 s of data collection. The combined XRD and XAS measurement capability of the station was tested by observing the collapse and re-crystallization of zinc-exchanged zeolite A (zeolite Zn/Na-A). Previous studies of this material on station 9.3 at the SRS were compared with those from the new station. A time improvement of 38 was observed with better quality counting statistics. The improved angular resolution from the WAXS detector enabled new peaks to be identified.
Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in scientific research. There exists very little experimental data probing WDM states at the atomic level to test current models and those performed up to now are limited in quality. Here, we report a proof-of-principle experiment that makes microscopic investigations of materials under dynamic compression easily accessible to users and with data quality close to that achievable at ambient. Using a single 100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical calculations in the value of the energy shift of the absorption onset and so this comparison should help to refine the approximations used in models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.