We report the growth of high quality GaN epitaxial layers by rf-plasma MBE. The unique feature of our growth process is that the GaN epitaxial layers are grown on top of a double layer that consists of an intermediate-temperature buffer layer (ITBL), which is grown at 690°C and a conventional low-temperature buffer layer deposited at 500°C. It is observed that the electron mobility increases steadily with the thickness of the ITBL, which peaks at 377 cm2V−1s−1 for an ITBL thickness of 800 nm. The PL also demonstrated systematic improvements with the thickness of the ITBL. Our analyses of the mobility and the photoluminescence characteristics demonstrate that the utilization of an ITBL in addition to the conventional low-temperature buffer layer leads to the relaxation of residual strain within the material resulting in improvement in the optoelectronic properties of the films. A maximum electron mobility of 430 cm2V−1s−1 can be obtained using this technique and further optimizing the growth conditions for the low-temperature buffer layer.
Aluminum nitride (AlN) and gallium nitride (GaN) thin films have potential uses in high temperature, high frequency (e.g. microwave) acoustic devices. In this work, the piezoelectric coefficients of wurtzite AlN and GaN/AlN composite film grown on silicon substrates by molecular beam epitaxy were measured by a Mach-Zehnder type heterodyne interferometer. The effects of the substrate on the measured coefficients are discussed.
We report detailed investigations of low-frequency excess noise in Ga -polarity GaN thin films deposited by RF-plasma assisted molecular beam epitaxy. The noise properties of the GaN thin films deposited with and without the intermediate-temperature buffer layers (ITBL) are studied in detailed to examine the effects of the ITBL on the noise. Substantial reduction in the flicker noise levels are observed for samples grown on ITBLs with a Hooge parameter of 3×10-4, which is believed to be the lowest, to date, reported for GaN material. At low-temperatures, Lorentzian bumps originating from the generation-recombination processes are observed. Detailed studies of the temperature dependencies of the voltage noise power spectra have led to the formulation of a model for the observed low-frequency fluctuations. The model stipulates that the phenomenon arises from the thermally activated trapping and detrapping of carriers. The process results in the correlated fluctuations in the carrier number and the Coulombic scattering rate. Quantitative computation shows that number fluctuation dominates in our samples. Numerical evaluation of the deep-levels indicates substantial reduction in the trap density for the Ga -polarity GaN films.
We report systematic characterizations of flicker noise in GaN based MODFETs. Flicker noise was measured across the channel of the devices from room temperature to 130 K. The voltage noise power spectra, S V (f) were found to be proportional to 1/f γ , where γ depends on the device temperature as well as the gate bias. Study of S V (f) as a function of the biasing condition was conducted in detail and was found to vary as V D 2 /(V G -V T
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.