A five-stage reactor was developed to simulate the gastro-intestinal microbial ecosystem of humans. The small intestine was simulated by a two-step "fill and draw" system, the large intestine by a three-step reactor. A representative supply medium was developed to support a microbial community resembling that of the human gastro-intestinal tract. The entire system was validated by monitoring fermentation fluxes and products, i.e. indicator bacterial groups, volatile fatty acids, enzymatic activities and headspace gases. The simulator was operated with varying concentrations and combinations of arabinogalactan, xylan, pectin, dextrins and starch. The resulting patterns of microbial diversity and activity were analysed and compared with data for in-vivo gastro-intestinal microbial communities as described in the literature and found to be representative.
Thus far, microbial fuel cells (MFCs) have been used to convert carbon-based substrates to electricity. However, sulfur compounds are ubiquitously present in organic waste and wastewater. In this study, a MFC with a hexacyanoferrate cathodic electrolyte was used to convert dissolved sulfide to elemental sulfur. Two types of MFCs were used, a square type closed to the air and a tubular type in which the cathode compartment was open to the air. The square-type MFCs demonstrated a potential-dependent conversion of sulfide to sulfur. In the tubular system, up to 514 mg sulfide L(-1) net anodic compartment (NAC) day(-1) (241 mg L(-1) day(-1) total anodic compartment, TAC) was removed. The sulfide oxidation in the anodic compartment resulted in electricity generation with power outputs up to 101 mW L(-1) NAC (47 W m(-3) TAC). Microbial fuel cells were coupled to an anaerobic upflow anaerobic sludge blanket reactor, providing total removals of up to 98% and 46% of the sulfide and acetate, respectively. The MFCs were capable of simultaneously removing sulfate via sulfide. This demonstrates that digester effluents can be polished by a MFC for both residual carbon and sulfur compounds. The recovery of electrons from sulfides implies a recovery of energy otherwise lost in the methane digester.
To obtain a restoring and protective calcite layer on degraded limestone, five different strains of the Bacillus sphaericus group and one strain of Bacillus lentus were tested for their ureolytic driven calcium carbonate precipitation. Although all the Bacillus strains were capable of depositing calcium carbonate, differences occurred in the amount of precipitated calcium carbonate on agar plate colonies. Seven parameters involved in the process were examined: calcite deposition on limestone cubes, pH increase, urea degrading capacity, extracellular polymeric substances (EPS)-production, biofilm formation, zeta-potential and deposition of dense crystal layers. The strain selection for optimal deposition of a dense CaCO(3) layer on limestone, was based on decrease in water absorption rate by treated limestone. Not all of the bacterial strains were effective in the restoration of deteriorated Euville limestone. The best calcite precipitating strains were characterised by high ureolytic efficiency, homogeneous calcite deposition on limestone cubes and a very negative zeta-potential.
SummaryInfections caused by antibiotic-resistant luminescent Vibrios can cause dramatic losses in aquaculture. In this study, the short-chain fatty acid b-hydroxybutyrate and its polymer poly-bhydroxybutyrate were investigated as possible new biocontrol agents. b-Hydroxybutyrate was shown to completely inhibit the growth of pathogenic Vibrio campbelli at 100 mM. Moreover, the addition of 100 mM of this fatty acid to the culture water of Artemia nauplii infected with the V. campbelli strain significantly increased the survival of the nauplii. As Artemia is a non-selective and particle filter feeder, we also investigated whether poly-b-hydroxybutyrate particles could be used to protect Artemia from the pathogenic V. campbellii. The addition of 100 mg l -1 poly-b-hydroxybutyrate or more to the Artemia culture water offered a preventive and curative protection from the pathogen as a significantly enhanced survival was noticed. If added as a preventive treatment, a complete protection of infected nauplii (no significant mortality compared with uninfected nauplii) was observed at 1000 mg l -1 poly-bhydroxybutyrate. Our data indicate that the use of poly-b-hydroxybutyrate might constitute an ecologically and economically sustainable alternative strategy to fight infections in aquaculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.