We have presented a formal model for the quantitative analysis of phylogenetic and specific effects on the distribution of trait values among species. Total trait values are divided into phylogenetic values, inherited from an ancestral species, and specific values, the result of independent evolution. This allows a quantitative assessment of the strength of the phylogenetic inertia, or burden, displayed by a character in a lineage, so that questions concerning the relative importance of phylogenetic constraints in evolution can be answered. The separation of phylogenetic from specific effects proposed here also allows phylogenetic factors to be explicitly included in cross-species comparative analyses of adaptation. This solves a long-standing problem in evolutionary comparative studies. Only species' specific values can provide information concerning the independent evolution of characters in a set of related species. Therefore, only correlations among specific values for traits may be used as evidence for adaptation in cross-species comparative analyses. The phylogenetic autocorrelation model was applied to a comparative analysis of the determinants of sexual dimorphism in weight among 44 primate species. In addition to sexual dimorphism in weight, mating system, habitat, diet, and size (weight itself) were included in the analysis. All of the traits, except diet, were substantially influenced by phylogenetic inertia. The comparative analysis of the determinants of sexual dimorphism in weight indicates that 50% of the variation among primate species is due to phylogeny. Size, or scaling, could account for a total of 36% of the variance, making it almost as important as phylogeny in determining the level of dimorphism displayed by a species. Habitat, mating system, and diet follow, accounting for minor amounts of variation. Thus, in attempting to explain why a particular modern primate species is very dimorphic compared to other primates, we would say first because its ancestor was more dimorphic than average, second because it is a relatively large species, and third because it is terrestrial, polygynous, and folivorous.
We have presented a formal model for the quantitative analysis of phylogenetic and specific effects on the distribution of trait values among species. Total trait values are divided into phylogenetic values, inherited from an ancestral species, and specific values, the result of independent evolution. This allows a quantitative assessment of the strength of the phylogenetic inertia, or burden, displayed by a character in a lineage, so that questions concerning the relative importance of phylogenetic constraints in evolution can be answered. The separation of phylogenetic from specific effects proposed here also allows phylogenetic factors to be explicitly included in cross-species comparative analyses of adaptation. This solves a long-standing problem in evolutionary comparative studies. Only species' specific values can provide information concerning the independent evolution of characters in a set of related species. Therefore, only correlations among specific values for traits may be used as evidence for adaptation in cross-species comparative analyses. The phylogenetic autocorrelation model was applied to a comparative analysis of the determinants of sexual dimorphism in weight among 44 primate species. In addition to sexual dimorphism in weight, mating system, habitat, diet, and size (weight itself) were included in the analysis. All of the traits, except diet, were substantially influenced by phylogenetic inertia. The comparative analysis of the determinants of sexual dimorphism in weight indicates that 50% of the variation among primate species is due to phylogeny. Size, or scaling, could account for a total of 36% of the variance, making it almost as important as phylogeny in determining the level of dimorphism displayed by a species. Habitat, mating system, and diet follow, accounting for minor amounts of variation. Thus, in attempting to explain why a particular modern primate species is very dimorphic compared to other primates, we would say first because its ancestor was more dimorphic than average, second because it is a relatively large species, and third because it is terrestrial, polygynous, and folivorous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.