This paper proposes a fully embedded resonant pressure sensor operating in the MHz range and realized in the standard low-temperature co-fired ceramics (LTCC) technology. Buried sensor design and usage of LTCC materials enable application of this sensor in high-temperature and chemically aggressive environments. Upgraded sensor and sensor-antenna models residing on an analytical concept are used for prediction of the system performance. Also, simulation results show that an increase of Young's modulus for the LTCC tape diminishes the sensor sensitivity. An experimental setup for wireless data retrieval is designed enabling precise measurement of the influence of pressure variation on the sensors resonant frequency. Experimentally attained results are compared with electrical characteristics determined by analytical calculations as well as those derived from electrical simulations.Index Terms-Embedded resonant pressure sensor, low-temperature co-fired ceramics (LTCC) technology, modeling and simulation of LTCC pressure sensor.
In this contribution, a novel measurement approach for miniaturized capillary electrophoresis (CE) devices is presented: End-to-end differential capacitively coupled contactless conductivity measurement. This measurement technique is applied to a miniaturized CE device fabricated in low-temperature cofired ceramics (LTCC) multilayer technology. The working principle is based on the placement of two distinct detector areas near both ends of the fluid inlet and outlet of the separation channel. Both output signals are subtracted from each other, and the resulting differential signal is amplified and measured. This measurement approach has several advantages over established, single-end detectors: The high baseline level resulting from parasitic stray capacitance and buffer conductivity is reduced, leading to better signal-to-noise ratio and hence higher measurement sensitivity. Furthermore, temperature and, thus, baseline drift effects are diminished owing to the differentiating nature of the system. By comparing the peak widths measured with both detectors, valuable information about zone dispersion effects arising during the separation is obtained. Additionally, the novel measurement scheme allows the determination of dispersion effects that occur at the time of sample injection. Optical means of dispersion evaluation are ineffective because of the opaque LTCC substrate. Electrophoretic separation experiments of inorganic ions show sensitivity enhancements by about a factor of 30-60 compared to the single-end measurement scheme.
In this paper a novel micromachined contactless conductivity CE device produced in low temperature co-fired ceramics (LTCC) is introduced. The application of LTCC multilayer technology provides a promising method for the contactless detection of conductive compounds because of its increased dielectric constant compared with glass or plastics. The capacitive coupling of the excitation signal into the microchannel across the LTCC substrate is improved, resulting in better detection sensitivity. Two silver electrodes located externally at opposite sides at the end of the separation channel act as detector. Impedance variations in the channel are measured without galvanic contact between electrodes and fluid. Inorganic ions are separated in less than 1 min with this novel ceramic device. The limit of detection is 10 microM for potassium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.