Atherosclerosis (AS) is a major contributor to cardiovascular diseases worldwide, and alleviating inflammation is a promising strategy for AS treatment. Here, we report molecularly engineered M2 macrophage‐derived exosomes (M2 Exo) with inflammation‐tropism and anti‐inflammatory capabilities for AS imaging and therapy. M2 Exo are derived from M2 macrophages and further electroporated with FDA‐approved hexyl 5‐aminolevulinate hydrochloride (HAL). After systematic administration, the engineered M2 Exo exhibit excellent inflammation‐tropism and anti‐inflammation effects via the surface‐bonded chemokine receptors and the anti‐inflammatory cytokines released from the anti‐inflammatory M2 macrophages. Moreover, the encapsulated HAL can undergo intrinsic biosynthesis and metabolism of heme to generate anti‐inflammatory carbon monoxide and bilirubin, which further enhance the anti‐inflammation effects and finally alleviate AS. Meanwhile, the intermediate protoporphyrin IX (PpIX) of the heme biosynthesis pathway permits the fluorescence imaging and tracking of AS.
Positioning essential elements of photodynamic therapy(PDT) near to mitochondria can conquer the rigorous spatiotemporal limitations of reactive oxygen species (ROS) transfer and make considerable differences in PDT.However, precise accumulation of photosensitizer (PS) and oxygen within mitochondria is still challenging. We simultaneously encapsulated hexyl 5-aminolevulinate hydrochloride (HAL) and 3-bromopyruvic acid (3BP) into microparticles collected from X-ray-irradiated tumor cells (X-MP). After systemic administration, the developed HAL/3BP@X-MP can specifically target and recognizet umor cells,w here HAL induces efficient accumulation of PpIX in mitochondria via the intrinsic haem biosynthetic pathway.Meanwhile,3BP remarkably increases the oxygen supply by inhibiting mitochondrial respiration. The accurate co-localization and prompt encounter of PpIX and oxygen produce sufficient ROS to directly disrupt mitochondria, resulting in significantly improved PDT outcomes.
Cancer vaccines are emerging as an attractive modality for tumor immunotherapy. However, their practical application is seriously impeded by the complex fabrication and unsatisfactory outcomes. Herein, we construct bacterial outer membrane vesicles (OMVs)-based in situ cancer vaccine with phytochemical features for photodynamic effects-promoted immunotherapy. By simply fusing thylakoid membranes with OMVs, bacteria-plant hybrid vesicles (BPNs) are prepared. After systemic administration, BPNs can target tumor tissues and stimulate the activation of immune cells, including dendritic cells (DCs). The photodynamic effects derived from thylakoid lead to the disruption of local tumors and then the release of tumorassociated antigens that are effectively presented by DCs, inducing remarkable tumor-specific CD8 + T cell responses. Moreover, BPNs can efficiently ameliorate the immunosuppressive tumor microenvironment and further boost immune responses. Therefore, both tumor development and metastasis can be efficiently prevented. This work provides a novel idea for developing a versatile membrane-based hybrid system for highly efficient tumor treatment.
A highly hydrophilic polymer equipped with guanidinium groups was used to load aromatic ring-containing hydrophobic agent doxorubicin (DOX) via π-π interaction. The results have shown that the delivery system exhibited enhanced cellular uptake and antitumor efficiency compared with free drugs. This study opens new avenues for the application of hydrophilic polymers in drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.