We have investigated structural phase transitions across a ferroelectric-to-antiferroelectric phase boundary in epitaxial ͑001͒ oriented Bi ͑1−x͒ Sm x FeO 3 thin films. For the Sm 3+ concentration of 0.1Յ x Յ 0.14, we observe short-range antiparallel cation displacements, verified by the appearance of localized 1 4 ͕011͖ weak reflections in the selected area electron diffraction patterns. At the critical composition of x = 0.14, the system adopts a complex nanoscale domain mixture with appearance of 1 4 ͕011͖, 1 2 ͕011͖, 1 2 ͕010͖, and 1 2 ͕111͖ reflections and an incommensurate phase bridging the rhombohedral and orthorhombic phases. For compositions 0.14Ͻ x Ͻ 0.2, orientational twin domains coupled with antiphase oxygen octahedral tilts, identified by 1 2 ͕hkl͖ weak superstructure are observed. The above systematic changes in the microstructure as a function of Sm 3+ doping are linked to the macroscopic functional properties.
With the aim to overcome the problems of climatic changes and rising ocean levels, one option is to produce large-scale sustainable energy by nuclear fusion of hydrogen and other very light nuclei similar to the energy source of the sun. Sixty years of worldwide research for the ignition of the heavy hydrogen isotopes deuterium (D) and tritium (T) have come close to a breakthrough for ignition. The problem with the DT fusion is that generated neutrons are producing radioactive waste. One exception as the ideal clean fusion process – without neutron production – is the fusion of hydrogen (H) with the boron isotope11B11 (B11). In this paper, we have mapped out our research based on recent experiments and simulations for a new energy source. We suggest how HB11 fusion for a reactor can be used instead of the DT option. We have mapped out our HB11 fusion in the following way: (i) The acceleration of a plasma block with a laser beam with the power and time duration of the order of 10 petawatts and one picosecond accordingly. (ii) A plasma confinement by a magnetic field of the order of a few kiloteslas created by a second laser beam with a pulse duration of a few nanoseconds (ns). (iii) The highly increased fusion of HB11 relative to present DT fusion is possible due to the alphas avalanche created in this process. (iv) The conversion of the output charged alpha particles directly to electricity. (v) To prove the above ideas, our simulations show for example that 14 milligram HB11 can produce 300 kWh energy if all achieved results are combined for the design of an absolutely clean power reactor producing low-cost energy.
Keywords: Diamond Focused ion beam FIB EBSD EELS TEM STEM Ion implantation Amorphous carbon Diamond like carbonThe interaction between diamond and a 30 kV Ga + focused ion beam, has been studied. Electron backscattered diffraction identified the critical dose for amorphisation of the diamond surface at 2 × 10 14 Ga + /cm 2 . Scanning transmission electron microscopy identified a 35 nm amorphous carbon layer which, at higher doses, can swell up to 31% its original volume and accommodate a significant quantity of gallium. Electron energy loss and energy dispersive X-ray spectroscopy further characterised this layer and identified both excess hydrogen and oxygen contained within a stable amorphous carbon structure.
The rare earth metal nitrides have been predicted to possess a wide range of electronic structures, ranging from ferromagnetic to half-metallic to semiconducting, which makes these materials attractive for a range of applications. In this study, GdN thin films were grown at room temperature on silicon and glass quartz substrates by thermally evaporating gadolinium metal in nitrogen atmospheres. A detailed microstructural characterisation of these films was carried out using a variety of techniques such as Transmission Electron Microscopy (TEM), Rutherford Backscattering Spectroscopy (RBS) and Energy Dispersive X-ray Spectrometry. TEM analysis indicated the films are nano-crystalline, with crystallite sizes being affected by the ionisation state of the nitrogen atmosphere used. Sources of the films' internal stress were discussed with a significant amount of oxygen absorption, identified by RBS, being a probable cause. Electron diffraction and energy dispersive X-ray studies found that GdN was the only phase present with oxygen uniformly distributed throughout the film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.