This paper aims to investigate the formation control of leader-follower multiagent systems, where the problem of collision avoidance is considered. Based on the graph-theoretic concepts and locally distributed information, a neural fuzzy formation controller is designed with the capability of online learning. The learning rules of controller parameters can be derived from the gradient descent method. To avoid collisions between neighboring agents, a fuzzy separation controller is proposed such that the local minimum problem can be solved. In order to highlight the advantages of this fuzzy logic based collision-free formation control, both of the static and dynamic leaders are discussed for performance comparisons. Simulation results indicate that the proposed fuzzy formation and separation control can provide better formation responses compared to conventional consensus formation and potential-based collision-avoidance algorithms.
This paper presents a new robust adaptive control method for a class of nonlinear systems subject to uncertainties. The proposed approach is based on an adaptive dynamic surface control, where the system uncertainties are approximately modeled by interval type-2 fuzzy neural networks. In this paper, the robust stability of the closed-loop system is guaranteed by the Lyapunov theorem, and all error signals are shown to be uniformly ultimately bounded. In addition to simulations, the proposed method is applied to a real ball-and-beam system for performance evaluations. To highlight the system robustness, different initial settings of ball-and-beam parameters are considered. Simulation and experimental results indicate that the proposed control scheme has superior responses, compared to conventional dynamic surface control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.