silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
A: CMOS Pixel Sensors (CPS) are attractive for CEPC vertex detector construction due to its high granularity, high speed, low material budgets, low power and potential high radiation tolerance. The characteristics of the sensing diode and the readout architecture were studied using several chips with small-scaled pixel array for CEPC vertex detector. This paper will study the design of a high data-rate readout logic design of a 512 × 1024 pixel array. For the innermost layer of CEPC vertex detector, the hit pixel frequency is near 120 MHz, which is several times higher than the design requirements of ALPIDE for ALICE vertex detector. Based on the hit-driven readout scheme in the pixel array of ALPIDE and FEI3, we propose a new peripheral readout logic design. All the double columns of pixels are read out in parallel and a fast readout architecrue of 512 double columns is realized. Meanwhile, a real-time data compression and a trigger-mode operation are supported to reduce the data output. The simulation results indicate the pixel hit frequency in 1Corrrsponding author.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.