As a kind of photodetector, position-sensitive-detectors (PSDs) have been widely used in noncontact photoelectric positioning and measurement. However, fabrications and applications of solar-blind PSDs remain yet to be harnessed. Herein, we demonstrate a solar-blind PSD developed from a graphene/Ga2O3 Schottky junction with a 25-nanometer-thick Ga2O3 film, in which the absorption of the nanometer-thick Ga2O3 is enhanced by multibeam interference. The graphene/Ga2O3 junction exhibits a responsivity of 48.5 mA/W and a rise/decay time of 0.8/99.8 μs at zero bias. Moreover, the position of the solar-blind spot can be determined by the output signals of the PSD. Using the device as a sensor of noncontact test systems, we demonstrate its application in measurement of angular, displacement, and light trajectory. In addition, the position-sensitive outputs have been used to demodulate optical signals into electrical signals. The results may prospect the application of solar-blind PSDs in measurement, tracking, communication, and so on.
Photomemories offer great opportunities for multifunctional integration of optical sensing, data storage, and processing into one single device. So far, however, little attention has been paid to photomemories working in...
With rapid developments in the field of very large‐scale integrated circuits, heat dissipation has emerged as a significant factor that restricts the high‐density integration of chips. Due to their high thermal conductivity and low thermal expansion coefficient, diamond/Cu composites have attracted considerable attention as a promising thermal management material. In this study, a surface tungsten carbide gradient layer coating of diamond particles has been realized using comprehensive magnetron sputtering technology and a heat treatment process. Diamond/Cu composites were prepared using high‐temperature and high‐pressure technology. The results show that, by adjusting the heat treatment process, tungsten carbide and di‐tungsten carbide are generated by an in situ reaction at the tungsten–diamond interface, and W–WC–W2C gradient layer‐coated diamond particles were obtained. The diamond/Cu composites were sintered by high‐temperature and high‐pressure technology, and the density of surface‐modified diamond/Cu composites was less than 4 g cm−3. The W–WC–W2C@diamond/Cu composites have a thermal diffusivity as high as 331 mm2 s−1, and their thermal expansion coefficient is as low as 1.76 × 10−6 K−1. The interface coherent structure of the gradient layer‐coated diamond/copper composite can effectively improve the interface heat transport efficiency.
X-ray detectors have numerous applications in medical imaging, industrial inspection, and crystal structure analysis. Gallium oxide (Ga2O3) shows potential as a material for high-performance X-ray detectors due to its wide bandgap, relatively high mass attenuation coefficient, and resistance to radiation damage. In this study, we present Sn-doped Ga2O3 microwire detectors for solar-blind and X-ray detection. The developed detectors exhibit a switching ratio of 1.66 × 102 under X-ray irradiation and can operate stably from room temperature to 623 K, which is one of the highest reported operating temperatures for Ga2O3 X-ray detectors to date. These findings offer a promising new direction for the design of Ga2O3-based X-ray detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.