Background: Breast cancer develops as a result of multiple gene mutations in combination with environmental risk factors. Causative variants in genes such as BRCA1 and/or BRCA2 have been shown to account for hereditary nature of certain breast cancers. However,other genes, such as ATM, PALB2, BRIP1, CHEK, BARD1, while lower in frequency, may also increase breast cancer risk. There are few studies examining the role of these causative variants. Our study aimed to examine the clinical and genetic characterization of hereditary breast cancer in a Chinese population. Methods: We tested a panel of 27 genes implicated in breast cancer risk in 240 participants using Next-Generation Sequencing. The prevalence of genetic causative variants was determined and the association between causative variants and clinico-pathological characteristics was analyzed. Results: Causative variant rate was 19.2% in the breast cancer (case) group and 12.5% in the high-risk group. In the case group 2.5% of patients carried BRCA1 causative variant, 7.5% BRCA2 variants, 1.7% patients had MUTYH, CHEK or PALB2 variants, and 0.8% patients carried ATM, BARD1, NBN, RAD51C or TP53 variants. In the high-risk group 5. 8% women carried MUTYH causative variants, 2.5% had causative variants in ATM, 1.7% patients had variants in BRCA2 and 0.8% in BARD1, BRIP1 or CDH1. There was no significant difference in the presence of causative variants among clinical stages of breast cancer, tumor size and lymph nodes status. However, eight of the 12 BRCA1/2 causative variants were found in the TNBC group. Conclusions: We found increased genetic causative variants in the familial breast cancer group and in high-risk women with a family history of breast cancer. However, the variant MUTYH c.892-2A > G may not be directly associated with hereditary breast carcinoma.
Nobiletin is a polymethoxylated flavone present in citrus fruits, which has been reported to have inhibitory effects on tumorigenesis of cancers. However, the biological function of nobiletin in breast cancer (BC) is largely unknown. To investigate the effect of nobiletin on growth of BC cells, the cell viability of BC was measured by MTT assay. In addition, gene and protein expressions were detected by qRT-PCR and western blot, respectively. The apoptosis and pyroptosis of BC cells were tested by flow cytometry. Finally, the correlation between miR-200b and JAZF1 was detected by dual luciferase report. The data indicated that nobiletin inhibited the proliferation of BC cells in a dose-dependent manner. Moreover, miR-200b mimics-induced pyroptosis of BC cells was further increased by nobiletin. Meanwhile, JAZF1 was found to be the target of miR-200b. Moreover, nobiletin induced apoptosis and pyroptosis of BC cells via miR-200b/JAZF1/NF-κB axis. In conclusion, nobiletin inhibited the tumorigenesis of BC via regulation of miR-200b/JAZF1 axis. Thus, nobiletin might serve as a new agent for the treatment of BC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.