Myeloid-derived suppressor cells (MDSC) are one of the main cell populations that negatively regulate immune responses. However, the mechanism underlying the expansion of MDSC remains unclear. Using miRNA microarray and TaqMan probe–based quantitative RT-PCR assay, we identified microRNA (miR)-155 and miR-21 as the two most upregulated miRNAs during the induction of MDSC from the bone marrow cells by GM-CSF and IL-6. High levels of miR-155 and miR-21 also were detected in bone marrow and spleen MDSC isolated from tumor-bearing mice. Our results also showed that TGF-β promoted the induction of MDSC through upregulating miR-155 and miR-21 expression. Overexpression of miR-155 and miR-21 enhanced whereas depletion of miR-155 and miR-21 reduced the frequencies of cytokine-induced MDSC. Subpopulation analysis indicated that miR-21 and miR-155 induced the expansion of both monocytic and granulocytic MDSC. Furthermore, miR-155 and miR-21 showed a synergistic effect on MDSC induction via targeting SHIP-1 and phosphatase and tensin homolog, respectively, leading to STAT3 activation. Finally, dexamethasone treatment strongly enhanced MDSC expansion through upregulating miR-155 and miR-21 expression, and the effect of dexamethasone on MDSC induction was abolished by depleting cellular miR-155 and miR-21. These results demonstrate a novel miR-155/miR-21–based regulatory mechanism that modulates functional MDSC induction.
The mechanism by which glucocorticoids alleviate renal inflammatory disorders remains incompletely understood. Here, we report that the efficacy of glucocorticoids in ameliorating FSGS depends on the capacity to expand myeloid-derived suppressor cells (MDSCs). After glucocorticoid treatment, the frequency of CD11b and kidney also increased after glucocorticoid treatment. The induced MDSCs from glucocorticoid-treated mice strongly suppressed T cells, dendritic cells, and macrophages but induced regulatory T cells in spleen, KDLNs, and kidney. Moreover, glucocorticoid treatment suppressed doxorubicin-induced T cell proliferation, dendritic cell and macrophage infiltration, and proinflammatory cytokine production, whereas this protective effect was largely abolished by depleting MDSCs using anti-Gr-1 antibody. Finally, the adoptive transfer of induced MDSCs into the doxorubicin-treated mice not only confirmed the protective role of MDSCs in doxorubicin-induced renal injury but also showed that the transferred MDSCs rapidly migrated into the lymphocyte-accumulating organs, such as the spleen and KDLNs, where they suppressed T cell proliferation. Taken together, these results demonstrate that glucocorticoid treatment ameliorates FSGS by expanding functional MDSCs and that this rapid elevation of MDSCs in peripheral blood may serve as an indicator for predicting the efficacy of glucocorticoid treatment.
The mechanism underlying T cell-mediated fulminant hepatitis is not fully understood. In this study, we investigated whether myeloid derived suppressor cells (MDSCs) could prevent the concanavalin A (ConA)-induced hepatitis through suppressing T cell proliferation. We observed an increase in the frequencies of MDSCs in mouse spleen and liver at early stage of ConA treatment, implicating that the MDSCs might be involved in the initial resistance of mice against ConA-mediated inflammation. Subpopulation analysis showed that the MDSCs in liver of ConA-induced mice were mainly granulocytic MDSCs. Adoptive transfer of the bone marrow-derived MDSCs into ConA-treated mice showed that the MDSCs migrated into the liver and spleen where they suppressed T cell proliferation through ROS pathway. In addition, the frequencies of MDSCs in mice were also significantly increased by the treatment with immune suppressor glucocorticoids. Transfer of MDSCs into the regulatory T cell (Treg)-depleted mice showed that the protective effect of MDSCs on ConA-induced hepatitis is Treg-independent. In conclusion, our results demonstrate that MDSCs possess a direct protective role in T cell-mediated hepatitis, and increasing the frequency of MDSCs by either adoptive transfer or glucocorticoid treatment represents a potential cell-based therapeutic strategy for the acute inflammatory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.