Dysregulated microRNAs play important pathological roles in carcinogenesis that are yet to be fully elucidated. This study was performed to investigate the biological functions of microRNA-320a (miR-320a) in breast cancer and the underlying mechanisms. Function analyses for cell proliferation, cell cycle, and cell invasion/migration, were conducted after miR-320a silencing and overexpression. The specific target genes of miR-320a were predicted by TargetScan algorithm and then determined by dual luciferase reporter assay and rescue experiment. The relationship between miR-320a and its target genes was explored in human breast cancer tissues. We found that miR-320a overexpression could inhibit breast cancer invasion and migration abilities in vitro, while miR-320a silencing could enhance that. In addition, miR-320a could suppress activity of 3′-untranslated region luciferase of metadherin (MTDH), a potent oncogene. The rescue experiment revealed that MTDH was a functional target of miR-320a. Moreover, we found that MTDH was negatively correlated with miR-320a expression, and it was related to clinical outcomes of breast cancer. Further xenograft experiment also showed that miR-320a could inhibit breast cancer metastasis in vivo. Our findings clearly demonstrate that miR-320a suppresses breast cancer metastasis by directly inhibiting MTDH expression. The present study provides a new insight into anti-oncogenic roles of miR-320a and suggests that miR-320a/MTDH pathway is a putative therapeutic target in breast cancer.
SET domain bifurcated 1 (SETDB1) is a histone H3 lysine 9 methyltransferase that is highly expressed in various tumor types, including breast cancer. However, how SETDB1 functions in breast cancer is unclear. In the present study, proliferation, migration and invasion assays were performed to explore the role of SETDB1 in breast cancer cells. SETDB1 downregulation in BT549 and MDA-MB-231 cells reduced cell proliferation, whereas upregulation in MCF7 and T47D cells enhanced proliferation. Depletion of SETDB1 suppressed cell migration and invasion in vitro and reduced lung metastasis in vivo. By contrast, SETDB1 overexpression enhanced cell migration and invasiveness. Notably, SETDB1 overexpression appeared to induce epithelial-mesenchymal transition (EMT) in MCF7 cells. Mechanistic investigations indicated that SETDB1 acts as an EMT inducer by binding directly to the promoter of the transcription factor Snail. Thus, SETDB1 is involved in breast cancer metastasis and may be a therapeutic target for treating patients with breast cancer.
Male breast carcinoma is a relatively rare disease. This study retrospectively investigated the clinicopathological features of 73 cases of male breast carcinoma in Chinese population, and classified the molecular subtype based on surrogate immunohistochemical definitions. The expression of GCDFP15, MGB, AR and FOXP1 were evaluated. Invasive carcinoma of no special type was the most common histological type in the study group (71.2%, 52/73). The luminal A and B subtypes were the major types of male breast carcinoma (60.9%, 34.8% respectively). AR and FOXP1 are expressed in 84.2% (48/57) and 71.9% (41/57) of the studied cases. Carcinoma of the luminal A subtype expressed GCDFP15 (73.5%, 25/34) and MGB (58.8%, 20/34) more frequently than cases of the luminal B subtypes (34.8%, 8/23 and 43.5%, 10/23, respectively; P = 0.004, P = 0.255, respectively). In conclusion, invasive carcinoma of no special type was the most common histological type in male breast carcinoma among Chinese population. Our study revealed that the luminal A and B subtypes were the major types of male breast carcinoma. AR and FOXP1 are highly expressed in male breast cancer. The luminal A subtype tends to express GCDFP15 and MGB more frequently than the luminal B subtype.
Departmental sources Background: SETDB1, an H3K9-specific histone methyltransferase, plays important roles in the progression of various human cancers. However, the expression patterns and its clinical roles of SETDB1 remain elusive in breast cancer (BC). Material/Methods: The transcriptional level of SETDB1 and survival data in BC were analyzed through UALCAN, ONCOMINE, and Pan Cancer Prognostics Database. SETDB1 protein expression was assessed by immunohistochemistry (IHC) in 159 BC tissue samples. The associations between SETDB1 expression and clinical pathological characteristics of patients were analyzed. The GEO dataset GSE108656 was downloaded and analyzed to identify the differentially expressed genes (DEGs) between control and BC cells targeting interference with SETDB. The DEGs were further integrated by bioinformatics analysis to decipher the key signaling pathways and hub genes that are regulated by SETDB. Results: The public databases showed the level of SETDB1 mRNA was significantly upregulated in BC. Our IHC results demonstrated the level of SETDB1 protein was associated with tumor size (P=0.028), histopathological grading (P=0.012), lymph node metastasis (P<0.001), and TNM stage (P<0.001). High expression of SETDB1 indicated worse overall survival (P=0.015) and shorter relapse-free survival (P=0.027). The bioinformatic analysis of GSE108656 suggested that the SETDB1-related DEGs was mainly enriched in antigen processing and presentation, as well as immune networks in BC. The cytoHubba analysis suggested the top 10 hub genes were IL6,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.