Nafion™ is the membrane material preferred for in situ glucose sensors. Unfortunately, surface properties of Nafion promote random protein adsorption and eventual foreign body encapsulation thus leading to loss if glucose signal over time. Here we detail surface modifications made by RF plasma deposition to Nafion with the intent to prevent random protein adsorption while providing enough functional sites (hydroxyl groups) to bind a biologically active peptide known to induce cellular adhesion (YRGDS). Nafion surfaces were modified by RF plasma polymerizing five different combinations of (1) tetraethylene glycol dimethyl ether (tetraglyme) and (2) 2-hydroxyethyl methacrylate (HEMA): pure tetraglyme, 2.5% HEMA/97.5% tetraglyme; 5% HEMA/95% tetraglyme, 10% HEMA/90% tetraglyme; and pure HEMA. Resultant surfaces were characterized by XPS (low and high resolution), dynamic contact angle, and atomic force microscopy. Protein adsorption and retention was determined and correlated to surface layer composition. The ability to bind a cell adhesion peptide was also determined and correlated well with surface layer composition.
This multi‐centre investigation explores the variability that results from using the power/flow rate ratio (W/F) to describe plasma treatment and plasma polymerization processes. Results from fourteen reactors of different design and spread across ten laboratories, showed that the chemistry of the treated and deposited polymer/plasma polymer films is highly variable between reactor systems, and that there was no clear pattern linking these variations to other properties of the reactor systems (e.g. pressure, volume, electrode configuration). Although W/FM provides a useful rule‐of‐thumb for process optimization within a single system, it does not provide sufficient information to enable the same plasma polymer to be produced on a different system.
Introduction: Encrustation of implanted urinary tract devices is associated with significant morbidity. Pellethane Ò is a polyether-based compound noted for its strength, porosity, and resistance to solvents. We assessed Pellethane thermoplastic polyurethane (TPU) with and without surface coatings 2-hydroxyethyl methacrylate (HEMA) and tetraethylene glycol dimethyl ether (TETRA) for the potential to resist encrustation in an artificial urine environment. Materials and Methods: Samples of Pellethane TPU, HEMA Pellethane TPU, TETRA Pellethane TPU, and hydrogel-coated ureteral stent (Cook Ò) were suspended in a batch-flow model with an artificial urine solution (AUS). Every 48 hours for 90 days, 40% of the solution was replaced with fresh AUS. All samples were stored in a 37°C incubator. Subsequently, the samples were thoroughly dried for 48 hours before weighing. Scanning electron microscopy was used to assess the degree of encrustation. Nu-Attom Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to determine the precise compositions of the encrustation specifically with regard to calcium, magnesium, and phosphate. Results: At the conclusion of the 90-day trial, the samples were analyzed, and the average mass changes were as follows: stent 63.78%, uncoated Pellethane TPU 11.50%, HEMA-coated Pellethane TPU 2.90%, and TETRAcoated Pellethane TPU 0.60%. Pellethane TPU products, and specifically those coated with HEMA and TETRA, exhibited less average mass increase and a lesser propensity to form encrustation than the traditional urinary tract stent. The mass increases noted on coated Pellethane devices were primarily ionic, whereas that of the stent was not. Conclusion: Pellethane, particularly with an HEMA-based preventative coating, may serve as a favorable alternative to traditional urinary stent material, providing its improved resistance to encrustation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.