Enantiomerically enriched diaryl, aryl heteroaryl, and diheteroaryl alcohols are an important family of compounds known for their biological properties. Moreover, these molecules are highly privileged scaffolds used as building blocks for the synthesis of pharmaceutically relevant products. This short review provides background on the enantioselective arylation and heteroarylation of carbonyl compounds, as well as, the most significant improvements in this field with special emphasis on the application of organometallic reagents.1 Introduction2 Background on the Enantioselective Synthesis of Diaryl, Aryl Heteroaryl, and Diheteroaryl Alcohols3 Organozinc Reagents4 Organolithium Reagents5 Grignard Reagents6 Organoaluminum Reagents7 Organotitanium Reagents8 Organobismuth Reagents9 Miscellaneous10 Conclusion
A new
catalytic protocol for the synthesis of selenoesters from
aryl iodides and diaryl diselenides has been developed, where formic
acid was employed as an efficient, low-cost, and safe substitute for
toxic and gaseous CO. This protocol presents a high functional group
tolerance, providing access to a large family of selenoesters in high
yields (up to 97%) while operating under mild reaction conditions,
and avoids the use of selenol which is difficult to manipulate, easily
oxidizes, and has a bad odor. Additionally, this method can be efficiently
extended to the synthesis of thioesters with moderate-to-excellent
yields, by employing for the first time diorganyl disulfides as precursors.
Palladium-catalyzed carbonylation reaction has surfaced as a robust tool for insertion of the carbonyl group into organic molecules, and in the last decades enormous progress has been made. Nowadays, a plethora of methodologies is available to synthesize all kinds of carbonyl compounds. However, the focus has shifted during recent years to address rising concerns related to developing safe, cost-efficient, and more sustainable methodologies. The use of different carbon monoxide (CO) precursors/sources, avoiding handling of highly toxic and flammable gaseous carbon monoxide, and substituting nonrenewable solvents for those derived from renewable feedstock have contributed to aim these goals. In this review, we will discuss the advent of the application of renewable solvents to improve the sustainability and environmentally benign nature of Pd-catalyzed carbonylation reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.