This critical review provides a critical discussion of the current state of knowledge of the key factors influencing the solubility of gases in ionic liquids (ILs), including sample purity, experimental methodology, "molecular" characteristics of ILs, temperature and pressure. The review starts with a brief introduction to the current developments and the existing problems in the studies of the gas solubility in ILs. Then, the experimental, computational and theoretical developments in conformational equilibria of ions, in nanosegregated polar and nonpolar domains in ILs, and in the mechanisms for dissolution of gases in ILs are discussed and subsequently collaborated together with our freeze-fracture transmission electron microscopic and Raman measurements to propose the new microscopic mechanism for dissolving the gases in ILs. Next, a critical and quantitative analysis of the influences of the sample purity and the experimental methodology on the gas solubility is made so that the "real" relationships between structure and solubility property can be revealed. In addition, a systematic and deeper understanding of how the "molecular" features of the ILs, the temperature, and the pressure influence the gas solubility is provided at the molecular level. In the section of concluding remarks, the comments are made on the molecular criteria for the future design of the ILs to enhance the gas solubility by specifically optimizing the molecular characteristics of the ILs (265 references).
We describe the preparation and characterization of a green and renewable polyelectrolyte complex (PEC) containing phosphorus, nitrogen and carbon elements, based on the ionic complexation between chitosan and phytic acid. Introduction of this PEC to ethylene−vinyl acetate copolymer (EVA) leads to an improvement of the flame retardancy. As for the EVA/PEC composites with 20.0 wt % of PEC (EVA/20PEC), the char residue at 600°C is 12 wt % higher than that of the pristine EVA under nitrogen atmosphere. Compared to the pristine EVA, the peak heat release rate and total heat release of EVA/20PEC show 249 W g −1 and 5.6 kJ g −1 decreases, respectively. The char residue of EVA/20PEC is full and compact, demonstrating excellent intumescent effect. Introduction of this PEC also contributes to a slight increase of the Young's modulus while maintains the excellent ductility. This work provides a new approach for the development of environmentally friendly intumescent flame retardant system.
Conductivities were measured for the ternary systems NaCl-LaCl(3)-H(2)O and KCl-CdCl(2)-H(2)O and their binary subsystems NaCl-H(2)O, KCl-H(2)O, CdCl(2)-H(2)O, and LaCl(3)-H(2)O at 298.15 K. The semi-ideal solution theory for thermodynamic properties of aqueous solutions of electrolyte mixtures was used together with the Eyring absolute rate theory to study conductivity of mixed electrolyte solutions. A novel simple equation for prediction of the conductivity of mixed electrolyte solutions in terms of the data of their binary solutions was established. The measured conductivities and those reported in literature were used to test the newly established equation and the generalized Young's rule for conductivity of mixed electrolyte solutions. The comparison results show that the deviation of a ternary solution from the new conductivity equation is closely related to its isopiestic behavior and that the deviations are often within experimental uncertainty if the examined system obeys the linear isopiestic relation. While larger deviations are found in the system with large ion pairing effect, the predictions can be considerably improved by using the parameters calculated from its isopiestic results. These results imply that the previous formulation of the thermodynamic properties of aqueous solutions of electrolyte mixtures has a counterpart for transport properties.
An azo-linked porous organic framework (Azo-Trip) in which triptycene is incorporated as linkage, has been constructed via a facile Zn-induced reductive homocoulping reaction. The Azo-Trip exhibits selective carbon dioxide uptake and excellent iodine uptake in vapour and liquid phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.