In order to screening new Lactic acid bacteria (LAB) strains to alleviating liver injury induced by oxidized oil, we isolated and screened LAB from Chinese fermented foods. Lactobacillus plantarum AR113, Pediococcus pentosaceus AR243, and Lactobacillus plantarum AR501 showed higher scavenging activity of α, α-Diphenyl-β-Picrylhydrazyl (DPPH) free radical and hydrogen radical, stronger inhibition of lipid peroxidation, and better protective effect on yeast cells in vitro. In vivo, oral administration of L. plantarum AR501 improved the antioxidant status of injury mice induced by oxidized oil including decreasing lipid peroxidation, recovering activities of antioxidant enzymes. Meanwhile, the gene expression of Nuclear factor erythroid 2-related factor 2 (Nrf2) of L. plantarum AR501 group was markedly elevated, and several antioxidant genes such as glutathione S-transferase (GSTO1), heme oxygenase-1 (HO-1), Glutamate cysteine ligase (GCL), and NAD(P)H:quinone oxidoreductase-l (NQO1) were subsequently up regulated in mice liver. Therefore, L. plantarum AR501 could be considered as potential candidates for production of functional foods that can alleviate the oxidative damage induced by oxidized oil.
Lactic acid bacteria (LAB) have been used as ingredients of functional foods to promote health and prevent diseases because of their beneficial effects. This study aimed to investigate the antioxidative effects of LAB on the hepatotoxicity in D-galactose-induced aging mice. LAB were isolated from the traditional Chinese fermented foods and screened by the tolerance of hydrogen peroxide (H O ). Male ICR (Institute of Cancer Research) mice were subcutaneously injected with D-galactose for 5 weeks and then gastric gavage with LAB for 6 weeks. The results showed that Lactobacillus plantarum AR113 and AR501, and Pediococcu pentosaceus AR243 could tolerate up to 1.5 mM H O in vitro, and they could live through simulated gastrointestinal tract (GIT) to colonizing the GIT of host. In vivo, oral administration of L. plantarum AR113 and AR501 improved the antioxidant status of D-galactose-induced oxidative stress mice such as alleviated liver damages and reduced abnormal activities of superoxide dismutase, glutathione peroxidase, and catalase to normal levels. In addition, L. plantarum AR501 markedly elevated the gene expression of nuclear factor erythroid-2-related factor 2 and upregulated the expressions of several antioxidant genes such as glutathione reductase, glutathione S-transferase, glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and NAD(P)H quinone oxidoreductase 1 in the liver of an aging mice. Therefore, L. plantarum AR501 could be a good candidate for producing antiaging functional foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.