A general model is proposed to describe thermal-induced mode distortion in the step-index fiber (SIF) high power lasers. Two normalized parameters in the model are able to determine the mode characteristic in the heated SIFs completely. Shrinking of the mode fields and excitation of the high-order modes by the thermal-optic effect are investigated. A simplified power amplification model is used to describe the output power redistribution under various guiding modes. The results suggest that fiber with large mode area is more sensitive on the thermally induced mode distortion and hence is disadvantaged in keeping the beam quality in high power operation. The model is further applied to improve the power scaling analysis of Yb-doped fiber lasers. Here the thermal effect is considered to couple with the optical damage and the stimulated Raman scattering dynamically, whereas direct constraint from the thermal lens is relaxed. The resulting maximal output power is from 67kW to 97kW, depending on power fraction of the fundamental mode.
Dense Z-pinch plasmas are powerful and energy-efficient laboratory sources of x rays, and show the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch and Z-pinch dynamic hohlraum (ZPDH) researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. Models are setup to study different physical processes. A full circuit model (FCM) was used to study the coupling between Z-pinch implosion and generator discharge. A mass injection model with azimuthal modulation was setup to simulate the wire-array plasma initiation, and the two-dimensional MHD code MARED was developed to investigate the Z-pinch implosion, MRT instability, stagnation and radiation. Implosions of nested and quasispherical wire array were also investigated theoretically and numerically. Key processes of ZPDH, such as the array-foam interaction, formation of the hohlraum radiation, as well as the following capsule ablation and implosion, were analyzed with different radiation magneto-hydrodynamics (RMHD) codes. An integrated 2D RMHD simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire-array plasma acceleration, shock generation and propagation, hohlraum formation, radiation ablation, and fuel compression.
Quantitative phase microscopy (QPM) has emerged as an important tool for material metrology and biological imaging. For broader adoption in those applications, we have proposed and demonstrated a new portable off-axis QPM method, which works in both transmission and reflection modes to meet different sample measurement requirements. The temporal and spatial sensitivities of our system, as quantified by optical path-length difference values, are 0.65 nm and 1.04 nm, respectively. To demonstrate its applicability for a wide range of applications, we deployed our system for profiling transistor gold electrode samples, observing red blood cell membrane fluctuations, imaging living cells flowing in a microfluidic chip, etc. Our portable QPM system has a low-cost design and involves a simple and robust phase-retrieval algorithm that we envision will allow for broader deployment at different environmental settings, including in resource-limited sites and integration with other metrology or imaging modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.