Western and indigenous Chinese pig breeds show obvious differences in muscle growth and meat quality; however, the underlying molecular mechanism remains unclear. In this study, proteome analysis of LM between purebred Meishan and Large White pigs was performed by 2-dimensional gel electrophoresis and mass spectrometry. A total of 25 protein spots were differentially expressed in the 2 breeds. The 14 identified proteins could be divided into 4 groups: energy metabolism, defense and stress, myofibrillar filaments, and other unclassified proteins. Quantitative real-time PCR was used to analyze the partly differentially expressed proteins in mRNA level, which revealed a positive correlation between the content of the proteins and their mRNA levels. We also analyzed the mRNA levels of myosin heavy chain isoforms using quantitative real-time PCR. The results indicated that IIa and IIx fibers were elevated in Meishan pigs, whereas the IIb fiber was more highly expressed in Large White pigs. To the best of our knowledge, this was the first proteomics-based investigation of total skeletal muscle protein in different pig breeds, and these results may provide valuable information for understanding the molecular mechanism responsible for breed-specific differences in growth performance and meat quality.
B-cell translocation gene 2 (BTG2), a member of the B-cell translocation gene family with anti-proliferative properties, have been characterized to be involved in cell growth, differentiation and survival. In this study, we cloned the full length sequences of cDNA and genomic DNA of BTG2 gene from the porcine skeletal muscle. Spatial expression analysis showed that the porcine BTG2 gene is expressed predominantly in muscle. Temporal expression analysis in longissimus dorsi muscle demonstrated that the expression of BTG2 gene has the highest expression at 60 days old in Large White while with a peak expression at 120 days old in Meishan. Temporal analysis also revealed that the expression of BTG2 gene is generally higher in Large White than in Meishan at all the developmental stages tested (65 days of conception and 3, 35, 60, 120, and 180 days of postnatal). A single nucleotide polymorphism (G417C) in the intron of BTG2 gene was then detected by PCR-RFLP in Large White × Meishan F2 resource population and association analysis suggested that this polymorphic site had significant association (P < 0.05) with the buttock fat thickness, fat percentage, lean muscle percentage, ratio of lean to fat and carcass length.
Simple and compound which are the two basic types of leaves are distinguished by the pattern of the distribution of blades on the petiole. Compared to simple leaves comprising a single blade, compound leaves have multiple blade units and exhibit more complex and diverse patterns of organ organization, and the molecular mechanisms underlying their pattern formation are receiving more and more attention in recent years. Studies in model legume Medicago truncatula have led to an improved understanding of the genetic control of the compound leaf patterning. This review is an attempt to summarize the current knowledge about the compound leaf morphogenesis of M. truncatula, with a focus on the molecular mechanisms involved in pattern formation. It also includes some comparisons of the molecular mechanisms between leaf morphogenesis of different model species and offers useful information for the molecular design of legume crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.