A severe problem for mutual informationmaximizing lookup table (MIM-LUT) decoding of low-density parity-check (LDPC) code is the high memory cost for using large tables, while decomposing large tables to small tables deteriorates decoding error performance. In this paper, we propose a method, called mutual information-maximizing quantized belief propagation (MIM-QBP) decoding, to remove the lookup tables used for MIM-LUT decoding. Our method leads to a very practical decoder, namely the MIM-QBP decoder, which can be implemented based only on simple mappings and fixed-point additions. We further present how to practically and systematically design the MIM-QBP decoder for both regular and irregular LDPC codes. Simulation results show that the MIM-QBP decoder can always considerably outperform the state-of-the-art MIM-LUT decoder. Furthermore, the MIM-QBP decoder with only 3 bits per message can outperform the floating-point belief propagation (BP) decoder at high signal-tonoise ratio (SNR) regions when testing on high-rate codes with a maximum of 10-30 iterations.Index Terms-Finite alphabet iterative decoding (FAID), lookup table (LUT), low-density parity-check (LDPC) code, mutual information (MI), quantized belief propagation (QBP).
Microelectrode recording (MER) along surgical trajectories is commonly applied for refinement of the target location during deep brain stimulation (DBS) surgery. In this study, we utilize automatically detected MER features in order to locate the subthalamic nucleus (STN) employing an unsupervised algorithm. The automated algorithm makes use of background noise level, compound firing rate and power spectral density along the trajectory and applies a threshold-based method to detect the dorsal and the ventral borders of the STN. Depending on the combination of measures used for detection of the borders, the algorithm allocates confidence levels for the annotation made (i.e. high, medium and low). The algorithm has been applied to 258 trajectories obtained from 84 STN DBS implantations. MERs used in this study have not been pre-selected or pre-processed and include all the viable measurements made. Out of 258 trajectories, 239 trajectories were annotated by the surgical team as containing the STN versus 238 trajectories by the automated algorithm. The agreement level between the automatic annotations and the surgical annotations is 88%. Taking the surgical annotations as the golden standard, across all trajectories, the algorithm made true positive annotations in 231 trajectories, true negative annotations in 12 trajectories, false positive annotations in 7 trajectories and false negative annotations in 8 trajectories. We conclude that our algorithm is accurate and reliable in automatically identifying the STN and locating the dorsal and ventral borders of the nucleus, and in a near future could be implemented for on-line intra-operative use.
BackgroundCurrently, many imaging photoplethysmography (IPPG) researches have reported non-contact measurements of physiological parameters, such as heart rate (HR), respiratory rate (RR), etc. However, it is accepted that only HR measurement has been mature for applications, and other estimations are relatively incapable for reliable applications. Thus, it is worth keeping on persistent studies. Besides, there are some issues commonly involved in these approaches need to be explored further. For example, motion artifact attenuation, an intractable problem, which is being attempted to be resolved by sophisticated video tracking and detection algorithms.MethodsThis paper proposed a blind source separation-based method that could synchronously measure RR and HR in non-contact way. A dual region of interest on facial video image was selected to yield 6-channels Red/Green/Blue signals. By applying Second-Order Blind Identification algorithm to those signals generated above, we obtained 6-channels outputs that contain blood volume pulse (BVP) and respiratory motion artifact. We defined this motion artifact as respiratory signal (RS). For the automatic selections of the RS and BVP among these outputs, we devised a kurtosis-based identification strategy, which guarantees the dynamic RR and HR monitoring available.ResultsThe experimental results indicated that, the estimation by the proposed method has an impressive performance compared with the measurement of the commercial medical sensors.ConclusionsThe proposed method achieved dynamic measurement of RR and HR, and the extension and revision of it may have the potentials for more physiological signs detection, such as heart rate variability, eye blinking, nose wrinkling, yawn, as well as other muscular movements. Thus, it might provide a promising approach for IPPG-based applications such as emotion computation and fatigue detection, etc.Electronic supplementary materialThe online version of this article (doi:10.1186/s12938-016-0300-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.