The piezoelectric effect has been widely observed in biological systems, and its applications in biomedical field are emerging. Recent advances of wearable and implantable biomedical devices bring promise as well as requirements for the piezoelectric materials building blocks. Owing to their biocompatibility, biosafety, and environmental sustainability, natural piezoelectric biomaterials are known as a promising candidate in this emerging field, with a potential to replace conventional piezoelectric ceramics and synthetic polymers. Herein, we provide a thorough review of recent progresses of research on five major types of piezoelectric biomaterials including amino acids, peptides, proteins, viruses, and polysaccharides. Our discussion focuses on their structure-and phaserelated piezoelectric properties and fabrication strategies to achieve desired piezoelectric phases. We compare and analyze their piezoelectric performance and further introduce and comment on the approaches to improve their piezoelectric property. Representative biomedical applications of this group of functional biomaterials including energy harvesting, sensing, and tissue engineering are also discussed. We envision that molecular-level understanding of the piezoelectric effect, piezoelectric response improvement, and large-scale manufacturing are three main challenges as well as research and development opportunities in this promising interdisciplinary field.
The design and synthesis of high-quality two-dimensional (2D) materials with desired morphology are essential for property control. One critical challenge that impedes the understanding and control of 2D crystal nucleation and growth is the inability of direct observation of the nanocrystal evolution process with high enough time resolution. Here, we demonstrated an in situ X-ray scattering approach that directly reveals 2D wurtzite ZnO nanosheet growth at the air−water interface. The time-resolved grazing incidence X-ray diffraction (GID) and grazing incidence X-ray off-specular scattering (GIXOS) results uncovered a lateral to vertical growth kinetics switch phenomenon in the ZnO nanosheet growth. This switch represents the 2D to three-dimensional (3D) crystal structure evolution, which governs the size and thickness of nanosheets, respectively. This phenomenon can guide 2D nanocrystal synthesis with rationally controlled size and thickness. Our work opens a new pathway toward the understanding of 2D nanomaterial growth kinetics based on time-resolved liquid surface grazing incidence X-ray techniques.
Glycine, the simplest amino acid, is considered a promising functional biomaterial owing to its excellent biocompatibil-ity and strong out-of-plane piezoelectricity. Practical applications require glycine films to be manufactured with their...
Flexible implantable medical devices (IMDs) are an emerging technology that may substantially improve the disease treatment efficacy and quality of life of patients. While many advancements have been achieved in IMDs, the constantly straining application conditions impose extra requirements for the packaging material, which needs to retain both high stretchability and high water resistivity under dynamic strains in a physiological environment. This work reports a polyisobutylene (PIB) blendbased elastomer that simultaneously offers a tissue-like elastic modulus and excellent water resistivity under dynamic strains. The PIB blend is a homogeneous mixture of two types of PIB molecules with distinct molecular weights. The blend achieved an optimal Young's modulus of 62 kPa, matching those of soft biological tissues. The PIB blend film also exhibited an extremely low water permittivity of 1.6−2.9 g m −2 day −1 , from unstrained to 50% strain states. The combination of high flexibility and dynamic water resistivity was tested using triboelectric nanogenerators (TENGs). The PIB blendpackaged TENG was able to stably operate in water for 2 weeks, substantially surpassing the protection offered by Ecoflex. This work offered a promising material solution for packaging flexible IMDs to achieve stable performance in a strained physiological environment.
Two-dimensional (2D) piezoelectric materials have recently drawn intense interest in studying the nanoscale electromechanical coupling phenomenon and device development. A critical knowledge gap exists to correlate the nanoscale piezoelectric property with the static strains often found in 2D materials. Here, we present a study of the out-of-plane piezoelectric property of nanometer-thick 2D ZnO-nanosheets (NS) in correlation to in-plane strains, using in situ via strain-correlated piezoresponse force microscopy (PFM). We show that the strain configuration (either tensile or compressive) can dramatically influence the measured piezoelectric coefficient (d 33 ) of 2D ZnO-NS. A comparison of the out-of-plane piezoresponse is made for in-plane tensile and compressive strains approaching 0.50%, where the measured d 33 varies between 2.1 and 20.3 pm V −1 resulting in an order-of-magnitude change in the piezoelectric property. These results highlight the important role of in-plane strain in the quantification and application of 2D piezoelectric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.