Dynamic DNA assemblies, including catalytic DNA circuits,
DNA nanomachines,
molecular translators, and reconfigurable nanostructures, have shown
promising potential to regulate cell functions, deliver therapeutic
reagents, and amplify detection signals for molecular diagnostics
and imaging. However, such applications of dynamic DNA assembly systems
have been limited to nucleic acids and a few small molecules, due
to the limited approaches to trigger the DNA assemblies. Herein, we
describe a binding-induced DNA strand displacement strategy that can
convert protein binding to the release of a predesigned output DNA
at room temperature with high conversion efficiency and low background.
This strategy allows us to construct dynamic DNA assembly systems
that are able to respond to specific protein binding, opening an opportunity
to initiate dynamic DNA assembly by proteins.
Anthocyanins and flavonols have vital roles in flower coloration, plant development, and defense. Because anthocyanins and flavonols share the same subcellular localization and common biosynthetic substrates, these pathways may compete for substrates. However, the mechanism regulating this potential competition remains unclear. Here, we identified GhMYB1a, an R2R3-MYB transcription factor involved in the regulation of anthocyanin and flavonol accumulation in gerbera (Gerberahybrida). GhMYB1a shares high sequence similarity with that of other characterized regulators of flavonol biosynthesis. In addition, GhMYB1a is also phylogenetically grouped with these proteins. The overexpression of GhMYB1a in gerbera and tobacco (Nicotianatabacum) resulted in decreased anthocyanin accumulation and increased accumulation of flavonols by upregulating the structural genes involved in flavonol biosynthesis. We further found that GhMYB1a functions as a homodimer instead of interacting with basic helix-loop-helix cofactors. These results suggest that GhMYB1a is involved in regulating the anthocyanin and flavonol metabolic pathways through precise regulation of gene expression. The functional characterization of GhMYB1a provides insight into the biosynthesis and regulation of flavonols and anthocyanins.
S100A7 is an EF-hand calcium-binding protein that has been suggested to be implicated in cell proliferation, migration, invasion and tumor metastasis. However, its role in cervical cancer has not yet been fully clarified. The present study used immunohistochemistry analysis of S100A7 in clinical specimens of cervical cancer to show that S100A7 expression was significantly upregulated in cervical cancer tissues compared with normal cervical tissues and S100A7 expression in high grade cervical intraepithelial neoplasm (CIN) was significantly higher than cervical cancer. Statistical analysis showed that S100A7 expression was associated with tumor grade (P <0.01) and lymph node metastasis (P <0.05). Functional studies showed that overexpression of S100A7 in cervical cancer cells promoted migration, invasion and metastasis of cervical cancer cells without influencing cell proliferation. Furthermore, S100A7 was found to be secreted into the conditioned media and extracellular S100A7 enhanced cell migration and invasion. Mechanistically, S100A7 bound to RAGE and activated ERK signaling pathway. And S100A7 enhanced cell mesenchymal properties and induced epithelial–mesenchymal transition. In summary, these data reveal a crucial role for S100A7 in regulating cell migration, invasion, metastasis and EMT of cervical cancer and suggest that targeting S100A7 may offer a new targeted strategy for cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.