The extensive design effort for KSTAR has been focused on two major aspects of the KSTAR
project mission - steady-state-operation capability and advanced tokamak physics. The steady
state aspect of the mission is reflected in the choice of superconducting magnets, provision of
actively cooled in-vessel components, and long pulse current drive and heating systems. The
advanced tokamak aspect of the mission is incorporated in the design features associated with
flexible plasma shaping, double null divertor and passive stabilizers, internal control coils and
a comprehensive set of diagnostics. Substantial progress in engineering has been made on
superconducting magnets, the vacuum vessel, plasma facing components and power supplies. The
new KSTAR experimental facility with cryogenic system and deionized water cooling and main
power systems has been designed, and the construction work is under way for completion
in 2004.
The Korea Superconducting Tokamak Advanced Research (KSTAR)
project is the major effort of the national fusion programme of the Republic of Korea. Its aim is
to develop a steady state capable advanced superconducting tokamak to
establish a scientific and technological basis for an attractive fusion
reactor. The major parameters of the tokamak are: major radius 1.8 m, minor
radius 0.5 m, toroidal field 3.5 T and plasma current 2 MA, with a
strongly shaped plasma cross-section and double null divertor. The initial
pulse length provided by the poloidal magnet system is 20 s, but the pulse
length can be increased to 300 s through non-inductive current drive. The
plasma heating and current drive system consists of neutral beams,
ion cyclotron waves, lower hybrid waves and electron cyclotron waves for
flexible profile control in advanced tokamak operating modes. A
comprehensive set of diagnostics is planned for plasma control,
performance evaluation and physics understanding. The project has
completed its conceptual design and moved to the engineering design and
construction phase. The target date for the first plasma is 2002.
This article describes an efficient method for the simultaneous measurement of the integrated reflectivity of a crystal in multiple orders of reflection at a predefined Bragg angle by using the bremsstrahlung continuum from an x-ray tube in combination with an energy-sensitive detector. The technique is demonstrated with a mica crystal for Bragg angles of 43°, 47°, and 50°. The measured integrated reflectivity for Bragg reflections up to the 24th order is compared with theoretical predictions, which are also presented in this article.
The KSTAR (Korea Superconducting Tokamak Advanced Research) project is the major effort of the Korean National Fusion Program to design, construct, and operate a steady-state-capable superconducting tokamak. The project is led by Korea Basic Science Institute and shared by national laboratories, universities, and industry along with international collaboration. It is in the conceptual design phase and aims for the first plasma by mid 2002. The key design features of KSTAR are: major radius 1.8 m, minor radius 0.5 m, toroidal field 3.5 T, plasma current 2 MA, and flexible plasma shaping (elongation 2.0; triangularity 0.8; double-null poloidal divertor). Both the toroidal and the poloidal field magnets a r e superconducting coils. The device is configured to be initially capable of 20s pulse operation and then to be upgraded for operation up to 300s with non-inductive current drive. The auxiliary heating and current drive system consists of neutral beam, ICRF, lower hybrid, and ECRF. Deuterium operation is planned with a full radliation shielding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.