Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Strontium (Sr) promotes osteoblast proliferation and inhibits osteoclast proliferation and positively affects bone regeneration. The aim of this study was to confirm the effects of strontium-substituted hydroxyapatite (Sr-HA) coating via electrochemical deposition on implant's osseointegration in the osteoporotic condition. Female Sprague Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group 5 % Sr-HA; group 10 % Sr-HA; and group 20 % Sr-HA. Afterward, all rats from groups HA, 5 % Sr-HA, 10 % Sr-HA, and 20 % Sr-HA received implants with hydroxyapatite coating containing 0, 5, 10, and 20 % Sr. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group 20 % Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, these are significant differences in bone formation and push-out force was observed between groups 5 % Sr-HA and 10 % Sr-HA. This finding suggests that Sr-HA coating can improve implant osseointegration, and the 20 % Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats.
Previous studies have demonstrated the effect of human parathyroid hormone (1-34) (PTH) or strontium-doped hydroxyapatite coating (Sr-HA) on osteoporotic bone implantation. However, reports about effects of PTH plus Sr-HA on bone osseointegration of titanium implants in a state of osteoporosis were limited. This study was designed to investigate the effects of intermittent administration of human parathyroid hormone (1-34) on strontium-doped hydroxyapatite coating (Sr-HA) implant fixation in ovariectomized (OVX) rats. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups including control group, Sr group, PTH group and PTH+Sr group. Forty OVX rats accepted implant insertion in the distal femurs, control group, and PTH group with HA implants and the Sr group and PTH+Sr group with Sr-HA implants. Animals from PTH group and PTH+Sr group then randomly received PTH (60 µg/kg, 3 times a week) until death at 12 weeks. After 12-week healing period, implants from group PTH+Sr revealed improved osseointegration compared with other treatment groups, which is manifested by the exceeding increase of bone area ratio and bone-to-implant contact, the trabecular microarchitecture and the maximal push-out force displayed by tests like histomorphometry, micro-CT, and biomechanics evaluation. These results demonstrated that PTH+ Sr-HA coatings could enhance implant osseointegration in OVX rats, and suggested the feasibility of using this method to improve implant fixation in osteoporotic bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.