Lincosamides are among the most frequently detected antibacterial agents in effluents from wastewater treatment plants and surface runoff at agricultural production systems. Little is known about their transformations in the environment. This study revealed that manganese oxide caused rapid and extensive decomposition of clindamycin and lincomycin in aqueous solution. The reactions occurred mainly at the pyranose ring of lincosamides, initially by formation of complexes with Mn and cleavage of the ether linkage, leading to the formation of a variety of degradation products via subsequent hydrolytic and oxidative reactions. The results of LC-MS/MS and FTIR analysis confirm cleavage of the C-O-C bond in the pyranose ring, formation of multiple carbonyl groups, and transformation of the methylthio moiety to sulfur oxide. The overall transformation was controlled by interactions of cationic species of lincosamides with MnO(2) surfaces. The presence of electrolytes (i.e., NaCl, CaCl(2), and MnCl(2)) and dissolved organic matter in aqueous solution, and increase of solution pH, diminished lincosamide binding to MnO(2) hence reducing the rate and magnitude of the transformations. Results from this study indicate that manganese dioxides in soils and sediments could contribute to the decomposition of lincosamide antibiotics released into the environment.
Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- < K- < Cs-smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.