Light detection in the deep-ultraviolet (DUV) solar-blind waveband has attracted interest due to its critical applications, especially in safety and space detection. A DUV photodetector based on wide-bandgap semiconductors provides a subversive scheme to simplify the currently mature DUV detection system. As an ultra-wide-bandgap (4.4–5.3 eV) semiconductor directly corresponding to the DUV solar-blind waveband, Ga2O3 has an important strategic position in the prospective layout of semiconductor technology owing to its intrinsic characteristics of high breakdown electric field, excellent tolerance of high/low temperature, high resistance to radiation, and rich material systems. As the only native substrate that can be fabricated from melt-grown bulk single crystals, β-Ga2O3 has attracted a lot of attention both in power-electronic and photo-electronic devices. In addition, other metastable phases (e.g. α, ϵ, γ) of Ga2O3 have attracted great interest due to their unique properties. In this work, we discuss the advances in achieving bulk and film Ga2O3 materials with different crystal phases. In addition, the latest achievements with polymorphous Ga2O3-based solar-blind photodetectors (SBPDs) and the methods to enhance their performance, including doping, annealing, and transparent electrodes, are also discussed. Furthermore, as the most desirable application, DUV imaging technologies based on Ga2O3 SBPDs are systematically summarized. Finally, conclusions regarding recent advances in Ga2O3 SBPDs, remaining challenges, and prospects are presented and discussed.
High tunability of photoresponse characteristics under work conditions is desired for a single solar-blind photodetector to be applied in multifarious fields. Three-terminal metal–oxide–semiconductor field-effect phototransistors have shown excellent controllability of performance, but the hysteresis issue impedes their stable operation. In this work, the metal–semiconductor field-effect phototransistor based on the exfoliated Ga2O3 microflake and graphene thin film is demonstrated. The high-quality quasi-van der Waals interface between Ga2O3 and graphene eliminates the hysteresis issue and generates a subthreshold swing as low as 69.4 mV/dec. By regulating gate voltage (Vg), the dominated mechanism of photocurrent generation in the device can be tuned continuously from the fast photoconduction effect to photogating effect with high photogain. Accordingly, the responsivity, dark current, detectivity, rejection ratio, and decay time of the device can be well adjusted by the Vg. At Vg = −1 V and a source to drain voltage of 2 V, the device shows excellent performance with a responsivity of 2.82 × 103 A/W, a rejection ratio of 5.88 × 105, and a detectivity of 2.67 × 1015 Jones under 254 nm illumination. This work shows the possibility of realizing highly tunable solar-blind photodetectors to meet the requirements for different application fields by introducing gate voltage modulation.
Self-powered solar-blind photodetector (SBPD) promises potential applications that urgently need portability and low-power consumption. Herein, an ultrasensitive self-powered p-n heterojunction SBPD based on amorphous NiO and single crystal Ga 2 O 3 has been reliably achieved. The device exhibits a high phototo-dark-current ratio of 3 × 10 6 , ultrahigh responsivity (R) of 5 A/W, and specific detectivity of 1.6 × 10 14 Jones under 254 nm illumination at 0 V, with a solar-blind/visible rejection ratio (R 254 nm /R 460 nm ) of 2 × 10 4 . Notably, the open circuit voltage can reach 1.3 V and the response speed is significantly less than 1 ms. The comprehensive performance of the device exceeds most reported stateof-the-art Ga 2 O 3 self-powered SBPDs, which is mainly attributed to amorphous NiO/crystalline Ga 2 O 3 vertical junction structure with low-defect interface and strong built-in electric field. This work provides novel design strategies for the future development of high-performance self-powered photodetector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.