Climatic factors are an abiotic component that determines ecosystem characteristics. Rapid development activities require capable observation instruments and able to provide a variety of weather data to analyze their impact on the environment. This study aims to develop an instrument for measuring temperature and humidity as an essential component of climatic factors based on the DHT11-Arduino microsensor. Tests carried out at 30 scattered points in Cikarang Raya, Bekasi Regency, West Java. Data from the DHT11-Arduino microsensor measurement results are compared with the results of ground measurement and satellite imageries data in the same period through statistical tests. This research shows the DHT11-Arduino microsensor is able to measure temperature and humidity in Cikarang Raya with a significance level of 0.05-0.01. The correlation between microsensor and the comparative data in observing the temperature reached 0.934, while the humidity reached 0.687. The distribution of temperature and humidity of the instruments shows a similar pattern. Using DHT11-Arduino microsensor to observe temperature and humidity has proven to be feasible and able developed to obtain climatic factors data as part of sustainable ecosystem management.
Ekspansi lahan terbangun melalui kehadiran pemukiman dan kawasan industri berimplikasi pada berkurang lahan bervegetasi di wilayah Cirebon dan sekitarnya. Kondisi menyebabkan peningkatan suhu yang berpotensi memunculkan urban heat island. Perubahan suhu dapat diprediksi menggunakan pemodelan spasial dinamis sebagai bagian dari proses perubahan lansekap. Penelitian ini bertujuan untuk memprediksi dinamika suhu permukaan di wilayah Cirebon dan sekitarnya menggunakan algoritma Artificial Neural Network-Cellular Automata (ANN-CA) dengan melibatkan variabel spasial seperti kepadatan bangunan, kerapatan vegetasi, dan kepadatan jaringan jalan. Sumber data yang digunakan dalam penelitian ini berasal dari citra Landsat-5 TM dan Landsat-8 OLI pada tahun 1999, 2009, serta 2019, sedangkan data jaringan jalan berasal dari OpenStreetMaps. Suhu permukaan diperoleh dari kanal termal yang diolah menggunakan Radiative Transfer Equation. Sementara variabel lainnya diperoleh dari Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI) dan line density. Penelitian ini menunjukkan suhu permukaan hasil pemodelan ANN-CA pada tahun 2019 memiliki rerata sebesar 22,61 °C. Model ini memiliki overall accuracy 0,63 dan overall kappa sebesar 0,52. Bila dibandingkan dengan nilai aktual, model ini memiliki nilai r-square mencapai 0,80 dengan selisih sebesar 0,54 °C yang layak untuk prediksi suhu permukaan di masa mendatang. Model ANN-CA menunjukkan sebaran suhu permukaan yang lebih tinggi berpusat pada wilayah kota dan peri-urban. Kajian terkait prediksi suhu permukaan diharapkan dapat menjadi perhatian utama dalam mewujudan resiliensi perkotaan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.