The main aim to improve the systemic bioavailability of Ramipril by the design of transdermal drug delivery based on chitosan nanoparticles dispersed into gels. When chitosan nanoparticles dispersed into gels consisting of poloxamer and carbopol the resulting formulation exhibited thixotropic behavior with a prolonged drug release properties. Our study demonstrated that the designed nanoparticles gel transdermal delivery system has a potential to improve the systemic bioavailability and the therapeutic efficacy of Ramipril loaded chitosan nanoparticles dispersed in carbopol gels. There is no incompatibility between drug and polymers by performing FTIR and DSC. To characterize the rate controlling membrane of transdermal patches. The thickness ranged between TNPGF1 to F9 0.11 ± 0.05 mm to 0.19 ± 0.07 mm, which indicates that they are uniform in thickness. The different batches of formulations weights variations were relatively good uniformity of weight variations among the various batches was observed, with all formulations and ranged from 1.40 ± 1.2% to 1.78 ± 2.0%. The flatness study showed that all the formulations had the same strip length before and after their cuts, indicating 99% flatness. The tensile strength of the TNPGF1 to TNPGF9 shows the 10.14 ± 1.19 to 12.78 ± 2.45 shows the excellent viscosity. The total amount of drug is present in the transdermal patches of TNPGF1 to TNPGF9 was found to be 90.5 ± 0.3 % to 98.5 ± 0.1 %. In-vitro Franz's diffusion drug Release Studies of among all formulations best formulation TNPGF6. The drug release through the transdermal patches of Ramipril, follows first order kinetics with diffusion controlled mechanism.
The purpose of this review is giving a current update of the knowledge in this field of ocular drug delivery. The ocular drug delivery has been a major challenge to drug delivery scientists mainly due to its unique anatomy and physiology. One of the major problems encountered by the conventional ocular dosage forms include the rapid precorneal drug loss due to its nasolacrimal drainage, tear turnover and drug dilution resulting in poor bioavailability. These efforts lead to development of novel drug delivery dosage forms such as nanoparticles, liposome, ocuserts, and mucoadhesive formulations. Controlled drug delivery systems offer many advantages over conventional dosage forms in terms of improving drug bioavailability, reducing toxicity and decreasing dosage frequency. Designing noninvasive sustained drug delivery systems and exploring the feasibility of topical application to deliver drugs to the posterior segment may drastically improve drug delivery in the years to come.
The cefotaxime is a broad spectrum cephalosporin antibiotic. It is mainly used in the treatment of bacterial infections. Cefotaxime is a suitable candidate for controlled release administration due to its short elimination time 1 hour. The main aim of the present investigation is to increase the gastric residence time by preparing floating drug delivery by using raft forming approach thereby improving bioavailability. The prepared Cefotaxime floating drug delivery by using raft forming approach were evaluated for hardness, weight variation, thickness, friability, drug content uniformity, total floating time, In-vitro dissolution studies and buoyancy lag time. Floating tablets were formulated using direct compression technique. Various polymers are used in the formulation they Micro crystalline cellulose used as binder, HPMC K15M, Guargum used as hydrophilic polymers, Chitosan, Sodium bicarbonate was incorporated as an effervescent substance, Sodium alginate used as viscous gel forming agent, Magnesium streate used as lubrication, talc was used as diluent. The formulated Cefotaxime tablet to be evaluated the following parameters as follow Weight variation (mg), Hardness, Thickness, Friability, Drug content uniformity, Floating lag time, the in vitro cumulative amount of drug released was shown the F7 is 99.28% within 45 minutes the comparative studies with marketed formulations F7 show the better results.
The present research work “Formulation and Evaluation of In-situ gels enriched with Tropicamide loaded solid lipid nanoparticles”. To overcome the problems of side effects and to increase the bioavailability of tropicamide loaded solid lipid nanoparticles are containing with suitable lipids (glycerin trimyristate, Tristearin, Phosphatidylcholine & soyabean lecithin) with stabilizers (poloxamer 188) and surfactant like polysorbate 80. The interaction between drug, lipids & polymer by performing with FTIR no incompatibility with each other. The particle morphology was carried out by SEM & AFM in solid lipid nanoparticle formulation. The particle size was ranges from 213.6 ± 2.16nm to 538.0 ± 6.53 nm. The zeta potential ranges form -18.3mV to 25.6mV. The entrapment efficiency of free tropicamide was ranges from 74.13 % to 90.17%. The drug content was ranges from 0.212mg/ml to 0.912mg/ml. The SLN formulations must be transparent white colour and semi solid consistency. The pH 7.0 to 8.0 in all formulation. The gelling strength of gels TSLNGF1 to TSLNGF12 was ranges from 72 ± 1 sec to 117 ± 2 sec. The bio adhesive force was ranges from 10.12 ±1.01 dynes/cm2 to 23.12 ± 1.91 dynes/cm2. The viscosity of prepared formulation ranges from 415 ± 1.94 cps to 652 ± 1.41 cps. The spread ability studies of all formulation were ranges from 09 gms/sec to 18 gms/sec. The Accelerated stability the formulations does not undergo any chemical Changes. In vitro Franz’s diffusion studies of SLN enriched in gels TSLNGF1 to TSLNGF12 among the various formulation best formulations was TSLNGF6; its follows first order kinetics. Keywords: Solid Lipid Nanoparticles; Tropicamide; In- situ gels; In vitro diffusion studies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.