Most of recent research on layered chalcogenides is understandably focused on single atomic layers. However, it is unclear if single-layer units are the most ideal structures for enhanced gas-solid interactions. To probe this issue further, we have prepared large-area MoS2 sheets ranging from single to multiple layers on 300 nm SiO2/Si substrates using the micromechanical exfoliation method. The thickness and layering of the sheets were identified by optical microscope, invoking recently reported specific optical color contrast, and further confirmed by AFM and Raman spectroscopy. The MoS2 transistors with different thicknesses were assessed for gas-sensing performances with exposure to NO2, NH3, and humidity in different conditions such as gate bias and light irradiation. The results show that, compared to the single-layer counterpart, transistors of few MoS2 layers exhibit excellent sensitivity, recovery, and ability to be manipulated by gate bias and green light. Further, our ab initio DFT calculations on single-layer and bilayer MoS2 show that the charge transfer is the reason for the decrease in resistance in the presence of applied field.
Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H2/CO2 and H2/N2 mixtures, respectively, through selective structural defects on GO.
Oxidative etching of graphene flakes was observed to initiate from edges and the occasional defect sites in the basal plane, leading to reduced lateral size and a small number of etch pits. In contrast, etching of highly defective graphene oxide and its reduced form resulted in rapid homogeneous fracturing of the sheets into smaller pieces. On the basis of these observations, a slow and more controllable etching route was designed to produce nanoporous reduced graphene oxide sheets by hydrothermal steaming at 200 °C. The degree of etching and the concomitant porosity can be conveniently tuned by etching time. In contrast to nonporous reduced graphene oxide annealed at the same temperature, the steamed nanoporous graphene oxide exhibited nearly 2 orders of magnitude increase in the sensitivity and improved recovery time when used as chemiresistor sensor platform for NO(2) detection. The results underscore the efficacy of the highly distributed nanoporous network in the low temperature steam etched GO.
Lithiation-exfoliation produces single to few-layered MoS2 and WS2 sheets dispersible in water. However, the process transforms them from the pristine semiconducting 2H phase to a distorted metallic phase. Recovery of the semiconducting properties typically involves heating of the chemically exfoliated sheets at elevated temperatures. Therefore, it has been largely limited to sheets deposited on solid substrates. Here, we report the dispersion of chemically exfoliated MoS2 sheets in high boiling point organic solvents enabled by surface functionalization and the controllable recovery of their semiconducting properties directly in solution. This process connects the scalability of chemical exfoliation with the simplicity of solution processing, ultimately enabling a facile method for tuning the metal to semiconductor transitions of MoS2 and WS2 within a liquid medium.
Field emission studies are reported for the first time on layered MoS₂ sheets at the base pressure of ∼1 × 10⁻⁸ mbar. The turn-on field required to draw a field emission current density of 10 μA/cm² is found to be 3.5 V/μm for MoS₂ sheets. The turn-on values are found to be significantly lower than the reported MoS₂ nanoflowers, graphene, and carbon nanotube-based field emitters due to the high field enhancement factor (∼1138) associated with nanometric sharp edges of MoS₂ sheet emitter surface. The emission current-time plots show good stability over a period of 3 h. Owing to the low turn-on field and planar (sheetlike) structure, the MoS₂ could be utilized for future vacuum microelectronics/nanoelectronic and flat panel display applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.