In this paper, an all-digitally controlled linear voltage regulator is proposed for ultra-low-power event-driven sensing platforms using a PMOS strength self-calibration technique. The voltage regulator generates the output voltage from 0.43V to 0.55V in steps of 30mV with a supply voltage of 0.6V. Against PVT and loading current variations, the PMOS strength selfcalibration circuitry utilizes a voltage-detected coarse tune and a timing-detected fine tune for output ripple reduction. The coarse tune is designed to suppress the output voltage within the finetune region via a comparator-based error detector. Accordingly, the fine tune block detects the PMOS turn-on ratio in a specific time window for further reducing the output ripple. This linear voltage regulator is implemented using TSMC 65nm LP CMOS process. The simulation results show the best improvement of ripple reduction by 81%. Moreover, ns-order voltage transition time and the best (lowest) FOM of 0.76 pA·s can be realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.