A fundamental goal of ecology is to reveal generalities in the myriad types of interactions among species, such as competition, mutualism and predation. Another goal is to explain the enormous differences in species richness among groups of organisms. Here, we show how these two goals are intertwined: we find that different types of species interactions have predictable impacts on rates of species diversification, which underlie richness patterns. On the basis of a systematic review, we show that interactions with positive fitness effects for individuals of a clade (e.g. insect pollination for plants) generally increase that clade’s diversification rates. Conversely, we find that interactions with negative fitness effects (e.g. predation for prey, competition) generally decrease diversification rates. The sampled clades incorporate all animals and land plants, encompassing 90% of all described species across life. Overall, we show that different types of local‐scale species interactions can predictably impact large‐scale patterns of diversification and richness.
Reconstructing accurate historical relationships within a species poses numerous challenges, not least in many plant groups in which gene flow is high enough to extend well beyond species boundaries. Nonetheless, the extent of tree-like history within a species is an empirical question on which it is now possible to bring large amounts of genome sequence to bear. We assess phylogenetic structure across the geographic range of the saguaro cactus, an emblematic member of Cactaceae, a clade known for extensive hybridization and porous species boundaries. Using 200 Gb of whole genome resequencing data from 20 individuals sampled from 10 localities, we assembled two data sets comprising 150,000 biallelic single nucleotide polymorphisms (SNPs) from protein coding sequences. From these we inferred within-species trees and evaluated their significance and robustness using five qualitatively different inference methods. Despite the low sequence diversity, large census population sizes, and presence of wide-ranging pollen and seed dispersal agents, phylogenetic trees were well resolved and highly consistent across both data sets and all methods. We inferred that the most likely root, based on marginal likelihood comparisons, is to the east and south of the region of highest genetic diversity, which lies along the coast of the Gulf of California in Sonora, Mexico. Together with striking decreases in marginal likelihood found to the north, this supports hypotheses that saguaro’s current range reflects post-glacial expansion from the refugia in the south of its range. We conclude with observations about practical and theoretical issues raised by phylogenomic data sets within species, in which SNP-based methods must be used rather than gene tree methods that are widely used when sequence divergence is higher. These include computational scalability, inference of gene flow, and proper assessment of statistical support in the presence of linkage effects.
Species interactions are crucial and ubiquitous across organisms. However, it remains unclear how long these interactions last over macroevolutionary timescales, and whether the nature of these interactions (mutualistic versus antagonistic) helps predict how long they persist. Here, we estimated the ages of diverse species interactions, based on phylogenies from 60 studies spanning the Tree of Life. We then tested if mutualistic interactions persist longer than antagonistic interactions. We found that the oldest mutualisms were significantly older than the oldest antagonisms across all organisms, and within plants, fungi, bacteria and protists. Surprisingly, this pattern was reversed in animals, with the oldest mutualisms significantly younger than the oldest antagonisms. We also found that many mutualisms were maintained for hundreds of millions of years (some greater than 1 billion years), providing strong evidence for the long-term stability of mutualisms and for niche conservatism in species interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.