In order to improve the molecular weight and application of a lignin byproduct, the trimethyl quaternary ammonium salt of lignin-sodium alginate polyampholyte (QL-SA) was prepared with trimethyl quaternary ammonium salt of lignin (QL) and sodium alginate (SA), using the crosslinker glutaraldehyde. Its structure was analyzed by FTIR, SEM, and analysis of nitrogen and carboxylic contents. Results showed that QL and SA were grafted successfully. The nitrogen content was diminished from 4.21% to 3.69% and its carboxyl content increased from 2.66 mmol/g to 6.47 mmol/g. The product behaved as flocculant by electrostatic interactions and bridging actions. The effects of QL-SA on the flocculation performance of dyes were investigated with methylene blue and acid black ATT water as the representative dyes. The maximum decolorization rate of acid black ATT was 94.91% and methylene blue was 97.11% under the corresponding optimal conditions (5 g/L of the flocculant at pH 3, 30 °C, and 8 g/L at pH 8, 30 °C). The effect of QL-SA was found to be markedly superior to SA and QL on the whole. The QL-SA showed promise for practical applications.
Background Multifunctional hydrogels with controllable degradation and drug release have attracted extensive attention in diabetic wound healing. This study focused on the acceleration of diabetic wound healing with selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release. Methods Herein, selenium-containing hybrid hydrogels, defined as DSeP@PB, were fabricated via the reinforcement of selenol-end capping polyethylene glycol (PEG) hydrogels by polydopamine nanoparticles (PDANPs) and Prussian blue nanozymes in a one-pot approach in the absence of any other chemical additive or organic solvent based on diselenide and selenide bonding-guided crosslinking, making them accessible for large-scale mass production. Results Reinforcement by PDANPs greatly increases the mechanical properties of the hydrogels, realizing excellent injectability and flexible mechanical properties for DSeP@PB. Dynamic diselenide introduction endowed the hydrogels with on-demand degradation under reducing or oxidizing conditions and light-triggered nanozyme release. The bioactivity of Prussian blue nanozymes afforded the hydrogels with efficient antibacterial, ROS-scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further animal studies indicated that DSeP@PB under red light irradiation showed the most efficient wound healing activity by stimulating angiogenesis and collagen deposition and inhibiting inflammation. Conclusion The combined merits of DSeP@PB (on-demand degradation, light-triggered release, flexible mechanical robustness, antibacterial, ROS-scavenging and immunomodulatory capacities) enable its high potential as a new hydrogel dressing that can be harnessed for safe and efficient therapeutics for diabetic wound healing.
Background Multifunctional hydrogels with controllable degradation and drug release have attracted extensive attention in diabetic wound healing. This study focused on the acceleration of diabetic wound healing with selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release. Methods Herein, selenium-containing hybrid hydrogels, defined as DSeP@PB, were fabricated via the reinforcement of selenol-end capping polyethylene glycol (PEG) hydrogels by polydopamine nanoparticles (PDANPs) and Prussian blue nanozymes in a one-pot approach in the absence of any other chemical additive or organic solvent based on diselenide and selenide bonding-guided crosslinking, making them accessible for large-scale mass production. Results Reinforcement by PDANPs greatly increases the mechanical properties of the hydrogels, realizing excellent injectability and flexible mechanical properties for DSeP@PB. Dynamic diselenide introduction endowed the hydrogels with on-demand degradation under reducing or oxidizing conditions and light-triggered nanozyme release. The bioactivity of Prussian blue nanozymes afforded the hydrogels with efficient antibacterial, ROS-scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further animal studies indicated that DSeP@PB under red light irradiation showed the most efficient wound healing activity by stimulating angiogenesis and collagen deposition and inhibiting inflammation. Conclusion The combined merits of DSeP@PB (on-demand degradation, light-triggered release, flexible mechanical robustness, antibacterial, ROS-scavenging and immunomodulatory capacities) enable its high potential as a new hydrogel dressing that can be harnessed for safe and efficient therapeutics for diabetic wound healing.
Tumors are a major cause of human mortality worldwide, and the rapid development of nanomaterials (NMs) for tumor therapy and drug delivery has provided new treatment methods. However, NMs’ high immunogenicity, short circulation time, and low specificity limit their application in tumor therapy. In recent years, bionanomaterials using cell membranes have emerged to overcome the shortcomings of monomeric NMs. Cell membrane-encapsulated NMs extracted from multiple cells not only retain the physicochemical properties of NMs but also inherit the biological functions of the source cells, aiding in drug delivery. The combination of the cell membrane and drug-loading NMs offers an efficient and targeted drug delivery system tailored to the tumor microenvironment. The research and application of this method have been widely carried out in the academic field of tumor diagnosis and treatment. This review presents the recent research progress of cell membrane-coated NMs as drug carriers in tumor therapy, including cell membrane extraction methods, encapsulation strategies, and the applications of cell membrane-encapsulated NMs in tumor therapy. We believe that biomimetic nanomaterials will be a promising and novel anticancer strategy in the future, and their wide application will certainly bring vitality to the field of tumor diagnosis and treatment. The combination of membrane and drug-loading nanomaterials embodies a highly efficient and target drug delivery system tailored to the tumor microenvironment, which broadens a new path of drug delivery for future cancer treatment. Meanwhile, it is also a perfect combination and application of biomedical nanomaterials, which is of great significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.